Skip to main content

Advertisement

Log in

Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) induces anti-inflammatory and angiogenic activities in wound healing. However, the mechanism of action and optimal parameters require further clarification. In this study, we investigated the effects of LLLT on wound healing matrix metalloproteinase (MMP)-2 immunoexpression and angiogenic processes. Twenty female Wistar rats were randomly divided into four groups (n = 5) according to the treatments as follows. CG7 and CG14 were control groups at days 7 and 14, respectively, which received physiological saline (0.9 % NaCl daily). LG7 and LG14 were laser therapy groups at days 7 and 14, respectively, which received two (LG7) or four (LG14) LLLT applications (40 mW; 660 nm; 4 J/cm2). A dorsal skin sample in the wound area (measuring 2 cm2) was removed after the experimental period, and then the animals were euthanized. The specimens were processed for qualitative and quantitative histological analyses and measurement of MMP-2 expression in the dermis and epidermis. A persistent crust and moderate number of inflammatory cells were found in CG7 and CG14 groups. In the LG14 group, wounds demonstrated complete re-epithelization at the remodeling phase. Angiogenesis and MMP-2 expression were higher in LLLT-treated groups, particularly the LG14 group, which correlated according to the Spearman correlation test. LLLT improves wound healing by enhancing neocollagenesis, increasing the amount of new vessels formed in the tissue (neoangiogenesis), and modulating MMP-2 expression. Epidermal overexpression of MMP-2 was correlated to angiogenic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43. doi:10.1159/000339613

    Article  CAS  PubMed  Google Scholar 

  2. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22(5):569–78. doi:10.1111/wrr.12205

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jung K, Covington S, Sen CK, Januszyk M, Kirsner RS, Gurtner GC, Shah NH (2016) Rapid identification of slow healing wounds. Wound Repair Regen 24(1):181–8. doi:10.1111/wrr.12384

    Article  PubMed  Google Scholar 

  4. Menke MN, Menke NB, Boardman CH, Diegelmann RF (2008) Biologic therapeutics and molecular profiling to optimize wound healing. Gynecol Oncol 111(2 Suppl):S87–91. doi:10.1016/j.ygyno.2008.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25(1):19–25. doi:10.1016/j.clindermatol.2006.12.005

    Article  PubMed  Google Scholar 

  6. Searle A, Gale L, Campbell R, Wetherell M, Dawe K, Drake N, Dayan C, Tarlton J, Miles J, Vedhara K (2008) Reducing the burden of chronic wounds: prevention and management of the diabetic foot in the context of clinical guidelines. J Health Serv Res Pol 13(Suppl 3):82–91. doi:10.1258/jhsrp.2008.008011

    Article  Google Scholar 

  7. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. doi:10.1111/j.1524-475X.2009.00543.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun X, Jiang K, Chen J, Wu L, Lu H, Wang A, Wang J (2014) A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis 25:32–7. doi:10.1016/j.ijid.2014.03.1397

    Article  PubMed  Google Scholar 

  9. Blackwell DL, Lucas JW, Clarke TC (2014) Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat 10(260):1–161

    Google Scholar 

  10. Norman RE, Gibb M, Dyer A, Prentice J, Yelland S, Cheng Q, Lazzarini PA, Carville K, Innes-Walker K, Finlayson K, Edwards H, Burn E, Graves N (2016) Improved wound management at lower cost: a sensible goal for Australia. Int Wound J 13(3):303–16. doi:10.1111/iwj.12538

    Article  PubMed  Google Scholar 

  11. Enoch S, Leaper DJ (2005) Basic science of wound healing. Surgery (Oxford) 23(2):37–42. doi:10.1383/surg.23.2.37.60352

    Article  Google Scholar 

  12. Enoch S, Leaper DJ (2008) Basic science of wound healing. Surgery (Oxford) 26(2):31–37. doi:10.1016/j.mpsur.2007.11.005

    Article  Google Scholar 

  13. Williamson D, Harding K (2004) Wound healing. Medicine 32(12):4–7. doi:10.1383/medc.32.12.4.55399

    Article  Google Scholar 

  14. Bellayr IH, Mu X, Li Y (2009) Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 1(6):1095–1111. doi:10.4155/fmc.09.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haubner F, Muschter D, Pohl F, Schreml S, Prantl L, Gassner HG (2015) A Co-culture model of fibroblasts and adipose tissue-derived stem cells reveals new insights into impaired wound healing after radiotherapy. Int J Mol Sci 16(11):25947–25958. doi:10.3390/ijms161125935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frankova J, Diamantova D, Vrbkova J, Ulrichova J (2013) Influence of hydrogencalcium salts of oxidized cellulose on MMP-2, MMP-9 and TNF-α production and wound healing in non-healing wounds. Acta Dermatovenerol Croat 21(4):219–223

    PubMed  Google Scholar 

  17. Karim RB, Brito BL, Dutrieux RP, Lassance FP, Hage JJ (2006) MMP-2 assessment as an indicator of wound healing: a feasibility study. Adv Skin Wound Care 19(6):324–327

    Article  PubMed  Google Scholar 

  18. Gillard JA, Reed MW, Buttle D, Cross SS, Brown NJ (2004) Matrix metalloproteinase activity and immunohistochemical profile of matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 during human dermal wound healing. Wound Repair Regen 12(3):295–304. doi:10.1111/j.1067-1927.2004.012314.x

    Article  PubMed  Google Scholar 

  19. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6–7):1334–1347. doi:10.1016/j.biocel.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  20. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564. doi:10.1016/j.ceb.2004.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629. doi:10.1038/nri1418

    Article  CAS  PubMed  Google Scholar 

  22. Nedeau AE, Gallagher KA, Liu ZJ, Velazquez OC (2011) Elevation of hemopexin-like fragment of matrix metalloproteinase-2 tissue levels inhibits ischemic wound healing and angiogenesis. J Vasc Surg 54(5):1430–1438. doi:10.1016/j.jvs.2011.05.029

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rojiani MV, Alidina J, Esposito N, Rojiani AM (2010) Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol 3(8):775–781

    PubMed  PubMed Central  Google Scholar 

  24. Krejner A, Grzela T (2015) Modulation of matrix metalloproteinases MMP-2 and MMP-9 activity by hydrofiber-foam hybrid dressing—relevant support in the treatment of chronic wounds. Cent Eur J Immunol 40(3):391–394. doi:10.5114/ceji.2015.54605

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharifian Z, Bayat M, Alidoust M, Farahani RM, Rezaie F, Bayat H (2014) Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med Sci 29(3):1227–1235. doi:10.1007/s10103-013-1500-5

    Article  PubMed  Google Scholar 

  26. Houreld NN, Ayuk SM, Abrahamse H (2014) Expression of genes in normal fibroblast cells (WS1) in response to irradiation at 660nm. J Photochem Photobiol B 130:146–152. doi:10.1016/j.jphotobiol.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  27. Carvalho PT, Silva IS, Reis FA, Perreira DM, Aydos RD (2010) Influence of ingaalp laser (660nm) on the healing of skin wounds in diabetic rats. Acta Cir Bras 25(1):71–79

    Article  Google Scholar 

  28. Gonçalves RV, Novaes RD, Cupertino MC, Moraes B, Leite JP, Peluzio MC, Pinto MV, da Matta SL (2013) Time-dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers Med Sci 28(2):383–390. doi:10.1007/s10103-012-1066-7

    Article  PubMed  Google Scholar 

  29. Fathabadie FF, Bayat M, Amini A, Rezaie F (2013) Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J Cosmet Laser Ther 15(6):294–304. doi:10.3109/14764172.2013.764435

    Article  PubMed  Google Scholar 

  30. Fonseca AS, Geller M, Bernardo Filho M, Valença SS, de Paoli F (2012) Low-level infrared laser effect on plasmid DNA. Lasers Med Sci 27(1):121–130. doi:10.1007/s10103-011-0905-2

    Article  PubMed  Google Scholar 

  31. Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91(2):411–416. doi:10.1111/php.12397

    Article  CAS  PubMed  Google Scholar 

  32. Yan W, Chow R, Armati PJ (2011) Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: implications for laser-induced analgesia. J Peripher Nerv Syst 16(2):130–135. doi:10.1111/j.1529-8027.2011.00337.x

    Article  PubMed  Google Scholar 

  33. Aparecida Da Silva A, Leal-Junior EC, Alves AC, Rambo CS, Dos Santos SA, Vieira RP, De Carvalho PT (2013) Wound-healing effects of low-level laser therapy in diabetic rats involve the modulation of MMP-2 and MMP-9 and the redistribution of collagen types I and III. J Cosmet Laser Ther 15(4):210–216. doi:10.3109/14764172.2012.761345

    Article  PubMed  Google Scholar 

  34. Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T, Oku N (2004) (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett 210(1):47–55. doi:10.1016/j.canlet.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Zgheib A, Lamy S, Annabi B (2013) Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem 288(19):13378–13386. doi:10.1074/jbc.M113.456533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito CT, Gulinelli JL, Panzarini SR, Garcia VG, Okamoto R, Okamoto T, Sonoda CK, Poi WR (2011) Effect of low-level laser therapy on the healing process after tooth replantation: a histomorphometrical and immunohistochemical analysis. Dent Traumatol 27(1):30–39. doi:10.1111/j.1600-9657.2010.00946.x

    Article  PubMed  Google Scholar 

  37. Freitas CP, Melo C, Alexandrino AM, Noites A (2013) Efficacy of low-level laser therapy on scar tissue. J Cosmet Laser Ther 15(3):171–176. doi:10.3109/14764172.2013.769272

    Article  PubMed  Google Scholar 

  38. Babuccu C, Keklikoğlu N, Baydoğan M, Kaynar A (2014) Cumulative effect of low-level laser therapy and low-intensity pulsed ultrasound on bone repair in rats. Int J Oral Maxillofac Surg 43(6):769–776. doi:10.1016/j.ijom.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  39. de Vasconcelos Catão MH, Nonaka CF, de Albuquerque RL, Bento PM, de Oliveira CR (2015) Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci 30(1):421–428. doi:10.1007/s10103-014-1687-0

    Article  PubMed  Google Scholar 

  40. Lopes NN, Plapler H, Lalla RV, Chavantes MC, Yoshimura EM, da Silva MA, Alves MT (2010) Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters. Lasers Surg Med 42(6):546–552. doi:10.1002/lsm.20920

    Article  PubMed  Google Scholar 

  41. Reis SR, Medrado AP, Marchionni AM, Figueira C, Fracassi LD, Knop LA (2008) Effect of 670-nm laser therapy and dexamethasone on tissue repair: a histological and ultrastructural study. Photomed Laser Surg 26(4):307–313. doi:10.1089/pho.2007.2151

    Article  CAS  PubMed  Google Scholar 

  42. Pugliese LS, Medrado AP, Reis SR, Andrade ZA (2003) The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odontol Bras 17(4):307–313

    Article  PubMed  Google Scholar 

  43. Koo HM, Yong MS, Na SS (2015) The effect of low-intensity laser therapy (LILT) on cutaneous wound healing and pain relief in rats. J Phys Ther Sci 27(11):3421–3423. doi:10.1589/jpts.27.3421

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Lima FJ, Barbosa FT, de Sousa-Rodrigues CF (2014) Use alone or in combination of Red and infrared laser in skin wounds. J Lasers Med Sci 5(2):51–57

    PubMed  PubMed Central  Google Scholar 

  45. Fernandes KP, Souza NH, Mesquita-Ferrari RA, Silva DF, Rocha LA, Alves AN, Sousa KB, Bussadori SK, Hamblin MR, Nunes FD (2015) Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B 153:344–351. doi:10.1016/j.jphotobiol.2015.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anwer AG, Gosnell ME, Perinchery SM, Inglis DW, Goldys EM (2012) Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence. Lasers Surg Med 44(9):769–778. doi:10.1002/lsm.22083

    Article  PubMed  Google Scholar 

  47. Maiya AG, Kumar P, Nayak S (2009) Photo-stimulatory effect of low energy helium-neon laser irradiation on excisional diabetic wound healing dynamics in Wistar rats. Indian J Dermatol 54(4):323–329. doi:10.4103/0019-5154.57606

    Article  PubMed  PubMed Central  Google Scholar 

  48. Litwiniuk M, Bikowska B, Niderla-Bielińska J, Jóźwiak J, Kamiński A, Skopiński P, Grzela T (2012) Potential role of metalloproteinase inhibitors from radiation-sterilized amnion dressings in the healing of venous leg ulcers. Mol Med Rep 6(4):723–728. doi:10.3892/mmr.2012.983

    CAS  PubMed  Google Scholar 

  49. Ayuk SM, Houreld NN, Abrahamse H (2014) Laser irradiation alters the expression profile of genes involved in the extracellular matrix in vitro. Int J Photoenergy 2014:17. doi:10.1155/2014/604518

    Article  Google Scholar 

  50. Guerra FR, Vieira CP, Almeida MS, Oliveira LP, de Aro AA, Pimentel ER (2013) LLLT improves tendon healing through increase of MMP activity and collagen synthesis. Lasers Med Sci 28(5):1281–1288. doi:10.1007/s10103-012-1236-7

    Article  Google Scholar 

  51. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106. doi:10.1089/pho.2006.2011

    Article  PubMed  Google Scholar 

  52. Cury V, Moretti AI, Assis L, Bossini P, Crusca JS, Neto CB, Fangel R, de Souza HP, Hamblin MR, Parizotto NA (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 125:164–170. doi:10.1016/j.jphotobiol.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Medeiros Maciel.

Ethics declarations

The study followed the guidelines of the Animal Experimentation Code of Ethics of the Brazilian College of Animal Experimentation and was approved by the Ethics Committee of Potiguar University Laureate International Universities (Protocol# 001/2013).

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This study was funded by a Brazilian National Council of Scientific and Technological Development (CNPq) research fellowship (#117277/2014-2 to Soares CD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, M.L., Araújo-Filho, I., da Silva, E.M.N. et al. Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 32, 35–43 (2017). https://doi.org/10.1007/s10103-016-2080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2080-y

Keywords

Navigation