Skip to main content
Log in

Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Bleeding is a common feature in envenoming caused by Bothrops snake venom due to extensive damage to capillaries and venules, producing alterations in capillary endothelial cell morphology. It has been demonstrated, in vivo, that photobiomodulation (PBM) decreases hemorrhage after venom inoculation; however, the mechanism is unknown. Thus, the objective was to investigate the effects of PBM on a murine endothelial cell line (tEnd) exposed to Bothrops jararaca venom (BjV). Cells were exposed to BjV and irradiated once with either 660- or 780-nm wavelength laser light at energy densities of 4 and 5 J/cm2, respectively, and irradiation time of 10 s. Cell integrity was analyzed by crystal violet and cell viability/mitochondrial metabolism by MTT assay. The release of lactic dehydrogenase (LDH) was quantified as a measure of cell damage. In addition, cytokine IL1-β levels were measured in the supernatant. PBM at 660 and 780 nm wavelength was able to increase cellular viability and decrease the release of LDH and the loss of cellular integrity. In addition, the concentration of pro-inflammatory cytokine IL1-β was reduced after PBM by both wavelengths. The data reported herein indicates that irradiation with red or near-infrared laser resulted in protection on endothelial cells after exposure to Bothrops venom and could be, at least in part, a reasonable explanation by the beneficial effects of PBM inhibiting the local effects induced by Bothrops venoms, in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gutiérrez JM, Williams D, Fan HW, Warrell DA (2010) Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon 56(7):1223–35

    Article  PubMed  Google Scholar 

  2. da Silva IM, Tavares AM (2012) Comparative evaluation of adverse effects in the use of powder trivalent antivenom and liquid antivenoms in Bothrops snake bites. Rev Soc Bras Med Trop 45(4):523–5

    Article  PubMed  Google Scholar 

  3. Escalante T, Rucavado A, Fox JW, Gutiérrez JM (2011) Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics 74(9):1781–94

    Article  CAS  PubMed  Google Scholar 

  4. da Silva NM, Arruda EZ, Murakami YL, Moraes RA, El-Kik CZ, Tomaz MA, Fernandes FF, Oliveira CZ, Soares AM, Giglio JR, Melo PA (2007) Evaluation of three Brazilian antivenom ability to antagonize myonecrosis and hemorrhage induced by Bothrops snake venoms in a mouse model. Toxicon 50(2):196–205

    Article  PubMed  Google Scholar 

  5. Bjarnason JB, Fox JW (1994) Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther 62:325–372

    Article  CAS  PubMed  Google Scholar 

  6. Gutiérrez JM, Núñez J, Escalante T, Rucavado A (2006) Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvasc Res 71:55–63

    Article  PubMed  Google Scholar 

  7. Ohsaka A (1979) Hemorrhagic, necrotizing and edema-forming effects of snake venoms. In: Lee CY (ed) Handbook of experimental pharmacology, vol 52. Springer, Berlin, pp 480–546

    Google Scholar 

  8. Zamuner SR, Gutiérrez JM, Muscurá MN, Teixeira SA, Teixeira CFP (2001) Bothrops asper and Bothrops jararaca snake venoms trigger microbicidal functions of peritoneal leukocytes in vivo. Toxicon 39:1505–1513

    Article  CAS  PubMed  Google Scholar 

  9. Cidade DA, Simão TA, Dávila AM, Wagner G, Junqueira-de-Azevedo IL, Ho PL, Bon C, Zingali RB, Albano RM (2006) Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon 48(4):437–61

    Article  CAS  PubMed  Google Scholar 

  10. Clemetson KJ, Lu Q, Clemetson JM (2007) Snake venom proteins affecting platelets and their applications to anti-thrombotic research. Curr Pharm Des 13(28):2887–92

    Article  CAS  PubMed  Google Scholar 

  11. Carneiro AS, Ribeiro OG, De Franco M, Cabrera WH, Vorraro F, Siqueira M, Ibañez OM, Starobinas N (2002) Local inflammatory reaction induced by Bothrops jararaca venom differs in mice selected for acute inflammatory response. Toxicon 40(11):1571–9

    Article  CAS  PubMed  Google Scholar 

  12. Zamuner SR, Teixeira CFP (2002) Cell adhesion molecules involved in the leukocyte recruitment induced by the venom of Bothrops jararaca. Mediators Inflamm 11:351–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rucavado A, Escalante T, Franceschi A, Chaves F, Leon G, Cury Y, Ovadia M, Gutierrez JM (2000) Inhibition of local hemorrhage and dermonecrosis induced by Bothrops asper snake venom: effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNaEDTA. Am J Trop Med Hyg 63(5–6):313–319

    CAS  PubMed  Google Scholar 

  14. Sanches EF, Freitas TV, Ferreira-Alves DL, Velarde DT, Diniz MR, Cordeiro MN, Agostini-Cotta G, Diniz CR (1992) Biological activities of venoms from South American snakes. Toxicon 30:95–103

    Article  Google Scholar 

  15. Chippaux JP, Goyffon M (1998) Venoms, antivenoms and immunotherapy. Toxicon 36:823–846

    Article  CAS  PubMed  Google Scholar 

  16. Zamuner SR, da Cruz-Hofling MA, Corrado AP, Hyslop S, Rodrigues-Simioni L (2004) Comparison of the neurotoxic and myotoxic effects of Brazilian Bothrops venoms and their neutralization by commercial antivenom. Toxicon 44:259–271

    Article  CAS  PubMed  Google Scholar 

  17. Doin-Silva R, Baranauskas V, Rodrigues-Simioni L, Cruz-Hofling MA (2009) The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochem Photobiol 85:63–69

    Article  CAS  PubMed  Google Scholar 

  18. Barbosa AM, Villaverde AB, Guimarães-Sousa L, Munin E, Fernandes CM, Cogo JC, Zamuner SR (2009) Effect of low-level therapy in the myonecrosis induced by B. jararacussu snake venom. Photomed Laser Surg 27(4):591–597

    Article  PubMed  Google Scholar 

  19. Barbosa AM, Villaverde AB, Sousa LG, Ribeiro W, Cogo JC, Zamuner SR (2008) Effect of low power laser therapy in the inflammatory response induced by Bothrops jararacussu snake venom. Toxicon 51:1236–1244

    Article  CAS  PubMed  Google Scholar 

  20. Souza LG, Dale CS, Nadur-Andrade N, Barbosa AM, Cogo JC, Zamuner SR (2011) Low level laser therapy reduces edema, leukocyte influx and hyperalgesia induced by Bothrop jararacussu snake venom. Clin Exp Med Lett 52(3–4):97–102

    Google Scholar 

  21. Nadur-Andrade N, Barbosa AM, Carlos FP, Lima CJ, Cogo JC, Zamuner SR (2012) Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom. Lasers Med Sci 27:65–70

    Article  PubMed  Google Scholar 

  22. Brenes O, Muñóz E, Roldán-Rodríguez R, Díaz C (2010) Cell death induced by Bothrops asper snake venom metalloproteinase on endothelial and other cell lines. Exp Mol Pathol 88:424–432

    Article  CAS  PubMed  Google Scholar 

  23. Lopes DS, Faquim-Mauro E, Magalhães GS, Lima IC, Baldo C, Fox JW, Moura-da-Silva AM, Clissa PB (2012) Gene expression of inflammatory mediators induced by jararhagin on endothelial cells. Toxicon 60(6):1072–84

    Article  CAS  PubMed  Google Scholar 

  24. Gremski LH, Chaim OM, Paludo KS, Sade YB, Otuki MF, Richardson M, Gremski W, Sanchez EF, Veiga SS (2007) Cytotoxic, thrombolytic and edematogenic activities of leucurolysin-a, a metalloproteinase from Bothrops leucurus snake venom. Toxicon 50(1):120–34

    Article  CAS  PubMed  Google Scholar 

  25. Park KH, Park WJ (2015) Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches. J Korean Med Sci 30:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vercauteren M, Remy E, Devaux C, Dautreaux B, Henry JP, Bauer F, Mulder P, Hooft van Huijsduijnen R, Bombrun A, Thuillez C, Richard V (2006) Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation 114(23):2498–507

  27. Dourado DM, Fávero S, Baranaukas V, Cruz-Hofling MA (2003) Effects of the Ga-As laser irradiation on myonecrosis caused by Bothrops Moojeni snake venom. Lasers Surg Med 33(5):352–357

    Article  PubMed  Google Scholar 

  28. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383

    Article  PubMed  PubMed Central  Google Scholar 

  29. Borkow G, Lomonte B, Gutiérrez JM, Ovadia M (1994) Effect of various viperidae and crotalidae snake venoms on endothelial cells in vitro. Toxicon 12:1689–1695

    Article  Google Scholar 

  30. Gutiérrez JM, Rucavado A (2000) Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82(9–10):841–50

    Article  PubMed  Google Scholar 

  31. Moreira L, Borkow G, Ovadia M, Gutiérrez JM (1994) Pathological changes induced by BaH1, a hemorrhagic proteinase isolated from Bothrops asper (terciopelo) snake venom, on mouse capillary blood vessels. Toxicon 32:977–987

    Article  CAS  Google Scholar 

  32. Zhang SL, Du YH, Wang J, Yang LH, Yang XL, Zheng RH, Wu Y, Wang K, Zhang MS, Liu HR (2010) Endothelial dysfunction induced by antibodies against angiotensin AT1 receptor in immunized rats. Acta Pharmacol Sin 31:1381–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clissa PB, Laing GD, Theakston RDG, Mota I, Taylor MJ, Moura-da-Silva AM (2001) The effect of jararhagin, a metalloproteinase from Bothrops jararaca venom, on pro-inflammatory cytokines released by murine peritoneal adherent cells. Toxicon 39:1567–1573

    Article  CAS  PubMed  Google Scholar 

  34. Escocard Rde C, Kanashiro MM, Petretski JH, Azevedo-Silva J, Queiroz de Carvalho EC, Dias da Silva W, Kipnis TL (2006) Neutrophils regulate the expression of cytokines, chemokines and nitric oxide synthase/nitric oxide in mice with Bothrop atrox venom. Immunobiology 211:37–46

    Article  PubMed  Google Scholar 

  35. Moura-da-Silva AM, Baldo C (2012) Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon 60:280–289

    Article  CAS  PubMed  Google Scholar 

  36. Lopes DS, Faquim-Mauro E, Magalhães GS, Lima IC, Baldo C, Fox JW, Moura-da-Silva AM, Clissa PB (2012) Gene expression of inflammatory mediators induced by jararhagin on endothelial cells. Toxicon 60:1072–1084

    Article  CAS  PubMed  Google Scholar 

  37. Kadl A, Leitinger N (2005) The role of endothelial cells in the resolution of acute inflammation. Antioxid Redox Signal 7:1744–1754

    Article  CAS  PubMed  Google Scholar 

  38. Carlos F, Silva MP, Melo E, Costa M, Zamuner SR (2014) Protective effect of low-level laser therapy (LLLT) on acute zymosan-induced arthritis. Lasers Med Sci 29(2):757–763

    Article  PubMed  Google Scholar 

  39. Palota RC, Bjordal JM, Frigo L, Junior EC, Teixeira S, Marcos RL, Ramos L, Messias FM, Lopes-Martins RA (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78

    Article  Google Scholar 

  40. de Lima FM, Aimbire F, Miranda H, Vieira Rde P, de Oliveira AP, Albertini R (2014) Low-level laser therapy attenuates the myeloperoxidase activity and inflammatory mediator generation in lung inflammation induced by gut ischemia and reperfusion: a dose–response study. J Lasers Med Sci 5(2):63–70

    PubMed  PubMed Central  Google Scholar 

  41. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218

    Article  CAS  PubMed  Google Scholar 

  42. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O et al (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922

    Article  CAS  PubMed  Google Scholar 

  43. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE 6(7), e22453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Callaghan GA, Riordan C, Gilmore WS, McIntyre IA, Allen JM et al (1996) Reactive oxygen species inducible by low-intensity laser irradiation alter DNA synthesis in the haemopoietic cell line U937. Lasers Surg Med 19:201–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by São Paulo Research Foundation (FAPESP), grant 2012/15165-2. The authors are grateful for the financial support provided by Capes/Prosup and Universidade Nove de Julho (UNINOVE). SRZ is a recipient of a CNPq-PQ grant Process: 449948/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Regina Zamuner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, A.T.B., Silva, L.M.G., Costa, M.S. et al. Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom. Lasers Med Sci 31, 1017–1025 (2016). https://doi.org/10.1007/s10103-016-1941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1941-8

Keywords

Navigation