Skip to main content

Advertisement

Log in

The effects of ultrasound and alternating current on the laser penetration in the tissue

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The visible (VIS) and near-infrared (NIR) lasers are now widely used in therapeutic and other medical applications. Some of these applications require to deliver the laser energy deep toward the desired tissue target or organ. The aim of this in vitro study is to investigate practically whether the modulation of laser energy by employing the therapeutic ultrasound or electrical energies can increase the penetration depth of the laser light inside the tissue. Such modulation was implemented in this study by coupling the (c.w.) diode and Nd:YAG laser energies with the ultrasound or AC current simultaneously as they pass through preprepared ex vivo bovine muscular tissue strips. Two wavelengths of diode lasers were used, 637 and 808 nm beside the 1064-nm Nd:YAG laser. The results showed a noticeable decrease of these laser attenuation factors as they pass through the tissue strips in the presence of the ultrasound or AC energies. By using this coupling modulation, the capability of increasing the laser penetration depths inside the tissue was confirmed without having to increase their applied power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ay S, Doğan SK, Evcik D (2010) Is low-level laser therapy effective in acute or chronic low back pain?”. Clin Rheumatol 29(8):905–910

    Article  PubMed  Google Scholar 

  2. Jang H, Lee H (2012) Meta-analysis of pain relief effects by laser irradiation on joint areas”. Photo med Laser Surg 30(8):405–417

    Article  Google Scholar 

  3. Yan W, Chow R, Armati PJ (2011) “Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: implications for laser-induced analgesia. J Peripher Nerve Syst 16(2):130–135

    Article  Google Scholar 

  4. Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α)”. J Comp Neurol 520(13):2903–2916

    Article  CAS  PubMed  Google Scholar 

  5. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomized placebo or active-treatment controlled trials”. Lancet 374:1897–1908, 9705

    Article  PubMed  Google Scholar 

  6. Alfredo PP, Bjordal JM, Dreyer SH, Meneses SR, Zaguetti G, Ovanessian V, Fukuda TY, Junior WS, Martin RA, Casarattto RA, Marques AP (2012) Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: a randomized double-blind study”. Clin Rehabil 26(6):523–533

    Article  PubMed  Google Scholar 

  7. Hashmi JT, Ying-Ying H, Sharma SK, Divya Balachandran K, Luis De T, Carroll JD, Hamblin MR (2010) Effect of Pulsing in Low-Level Light Therapy”. Lasers Surg Med 42(6):450–466

    Article  PubMed  PubMed Central  Google Scholar 

  8. Watson T (2008) Ultrasound in contemporary physiotherapy practice”. Ultrasonics 48(4):321–329

    Article  PubMed  Google Scholar 

  9. Tascioglu F, Kuzgun S, Armagan O, Ogutler G (2010) Short-term effectiveness of ultrasound therapy in knee osteoarthritis”. J Int Med Res 38(4):1233–1242

    Article  CAS  PubMed  Google Scholar 

  10. Loyola-Sánchez A, Richardson J, MacIntyre NJ (2010) Efficacy of ultrasound therapy for the management of knee osteoarthritis: a systematic review with meta-analysis”. Osteoarthritis Cartilage 18(9):1117–1126

    Article  PubMed  Google Scholar 

  11. Shanks P, Curran M, Fletcher P, Thompson R (2010) The effectiveness of therapeutic ultrasound for musculoskeletal conditions of the lower limb: a literature review. Foot 20(4):133–139

    Article  Google Scholar 

  12. De Tommaso M, Fiore P, Camporeale A, Guido M, Libro G, Losito L, Megna M, Puca F, Megna G (2003) High and low frequency transcutaneous electrical nerve stimulation inhibits nociceptive responses induced by CO2 laser stimulation in humans. Neurosci Lett 342(1–2):17–20

    Article  PubMed  Google Scholar 

  13. Medalha CC, Amorim BO, Ferreira JM, Oliveira P, Pereira RM, Tim C, Lirani-Galvão AP, da Silva OL, Renno AC (2010) Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats. Photomed Laser Surg 28(5):669–674

    Article  PubMed  Google Scholar 

  14. Makela A (2012) 28 years of clinical experience in the treatment of neurological diseases by laser, light and electro stimulation. Photodiagnosis and Photodynamic Therapy 9:S31

    Article  Google Scholar 

  15. Naeser MA, Hahn KK, Margaret Naeser A, Kyung-Ae Hahn K, Barbara Lieberman E, Kenneth Branco F (2002) Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: a controlled study. Archives of Physical Medicine and Rehabilitation 83(7):978–988

    Article  PubMed  Google Scholar 

  16. Neil Sadick S, Yuriko M (2004) Selective electro-thermolysis in aesthetic medicine: a review. Lasers in Surgery and Medicine 34:91–97

    Article  PubMed  Google Scholar 

  17. Demir H, Menku P, Kirnap M, Calis M, Ikizceli I (2004) Comparison of the effects of laser, ultrasound, and combined laser + ultrasound treatments in experimental tendon healing”. Lasers Surg Med 35(1):84–9

    Article  PubMed  Google Scholar 

  18. Trelles MA, Martín-Vázquez, Trelles M (2006) Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels”. Lasers Surg Med Mar 38(3):185–195

    Article  Google Scholar 

  19. Neil Sadick S (2005) Electro-optical synergy in aesthetic medicine: novel technology, multiple applications. Cosmetic Dermatology 18(3):201–206

    Google Scholar 

  20. Cyrus C (2004) Prospective study on combination diode laser and radiofrequency energies (ELOSTM) for the treatment of leg veins”. J Cosmet & Laser Ther 6:1–5

    Google Scholar 

  21. Lutzweiler C, Razansky D (2013) Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13:7345–7384

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lapidoth M, Yaniv E, Ben Amitai D, Raveh E, Kalish E, Waner M, David M (2005) Treatment of facial venous malformations with combined radiofrequency current and 900 nm diode laser”. Dermatol Surg 31(10):1308–12

    Article  CAS  PubMed  Google Scholar 

  23. Song H, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature”. Journal of Biomedical Optics 15(1):011101(January/February)

    Article  Google Scholar 

  24. Li J, Wang LHV (2002) Ultrasound modulated laser speckle imaging of biological tissues”, Proceedings of the Second Joint EMBS/BMES Conference Houston, TX, USA

    Book  Google Scholar 

  25. Sui L, Roy RA, DiMarzio CA, Murray TW (2005) Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect”. Applied Optics 44:4041–4048

    Article  PubMed  Google Scholar 

  26. Lev A, Sfez B (2003) In vivo demonstration of the ultrasound-modulated light technique”. Journal of the Optical Society of America A 20:2347–2354

    Article  Google Scholar 

  27. Daniel Elson S, Li R, Christopher D, Robert E, Meng-Xing T (2011) Ultrasound-mediated optical tomography: a review of current methods. Interface Focus 1:632–648. doi:10.1098/rsfs.2011.0021

    Article  PubMed  PubMed Central  Google Scholar 

  28. Christopher Jarrett W, Charles Caskey F, Gore JC (2014) Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light”. PLOS One 9(8):e104268. doi:10.1371/journal.pone.0104268,2014

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klein WR, Cook BD (1967) Unified approach to ultrasonic light diffraction”, IEEE Trans Sonics ultrason. SU-14., pp 723–733

    Google Scholar 

  30. Wang LHV (2003) Ultrasound-mediated biophotonic imaging: a review of acoustooptical tomography and photo-acoustic tomography”. Disease Markers 19:123–138, Daniel S. Elson, Rui Li, Christopher Dunsby, Robert Eckersley and Meng-Xing Tang, “Ultrasound-mediated optical tomography: a review of current methods“, Interface Focus 1, 632–648 doi:10.1098/rsfs.2011.0021 Published online 2 June, 2011

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Wang LHV (2004) Ultrasound-modulated optical computed tomography of biological tissues”. Applied Physics Letters 84:1597–1599

    Article  CAS  Google Scholar 

  32. Murray TW, Sui L, Maguluri G, Roy RA, Nieva A, Blonigen F, DiMarzio CA (2004) Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect”. Optics Letters 29:2509–2511

    Article  PubMed  Google Scholar 

  33. Mahan GD, Engler WE, Tiemann JJ, Uzgiris E (1998) Ultrasonic tagging of light: theory. Proceedings of the National Academy of Sciences of the United States of America 95:14015–14019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kempe M, Larionov M, Zaslavsky D, Genack AZ (1997) Acousto-optic tomography with multiply scattered light”. Journal of the Optical Society of America A 14:1151–1158

    Article  Google Scholar 

  35. Yao G, Wang LV (2000) Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue”. Applied optics 39(4):659–664

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi M, Yoshizawa T, Kusaka Y, Furusawa Y, Nakamura Y, Atogami F, Niikura H (2013) Detecting subclinical secondary lymphoedema using bioimpedance: a preliminary study. Journal of Lymphoedema 8(2):16–20

    Google Scholar 

  37. ATyna H, Iles SE (2003) Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res 6(2):69–74. doi:10.1186/bcr744, PMCID: PMC400648, 2004

    Article  Google Scholar 

  38. Tuorkey JM (2012) Bioelectrical impedance as a diagnostic factor in the clinical practice and prognostic factor for survival in cancer patients: prediction. Accuracy and Reliability Biosens Bioelectron 3:4

    Google Scholar 

  39. Rockson S (2007) Bioimpedance analysis in the assessment of lymphedema diagnosis and management”. Journal of Lymphoedema 2(1):44–48

    Google Scholar 

  40. Massarweh NN, Cosgriff N, Slakey DP (2006) Electrosurgery: history, principles, and current and future uses. Journal of the American College of Surgeons 202(3):520–530

    Article  PubMed  Google Scholar 

  41. Izzo AD, Walsh JT Jr, Jansen ED, Bendett M, Webb J, Ralph H, Richter CP (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength”. IEEE Trans Biomed Eng 54(6 Pt 1):1108–1114

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wells JD, Thomsen S, Whitaker P, Jansen ED, Kao CC, Konrad PE, Mahadevan-Jansen A (2007) Optically mediated nerve stimulation: identification of injury thresholds. Lasers Surg Med 39(6):513–526

    Article  PubMed  Google Scholar 

  43. Wells J, Konrad P, Kao C, Jansen ED, Mahadevan-Jansen A (2007) Pulsed laser versus electrical energy for peripheral nerve stimulation”. J Neurosci Methods 163(2):326–337

    Article  PubMed  PubMed Central  Google Scholar 

  44. Agnew WF, McCreery DB (1990) Considerations for safety with chronically implanted nerve electrodes”. Epilepsia 31 Suppl 2S:27–32

    Article  Google Scholar 

  45. Netherton BL, Stecker MM, Patterson T (2007) Mechanisms of electrode induced injury. Part 3: practical concepts and avoidance. Am J Electroneurodiagnostic Technol 47(4):257–263

    PubMed  Google Scholar 

  46. Patterson T, Stecker MM, Netherton BL (2007) Mechanisms of electrode induced injury. Part 2: clinical experience. Am J Electroneurodiagnostic Technol 47(2):93–113

    PubMed  Google Scholar 

  47. Stecker MM, Patterson T, Netherton BL (2006) Mechanisms of electrode induced injury. Part 1: theory. Am J Electroneurodiagnostic Technol 46(4):315–342

    PubMed  Google Scholar 

  48. Austin Duke R, Jonathan Cayce M, Jonathan Malphrus D, Peter K, Anita M-J, Duco Jansen E (2009) Combined optical and electrical stimulation of neural tissue in vivo. J Biomed Opt 14(6):060501. doi:10.1117/1.3257230,2009

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Abreu Freitas RP, de Barcelos APM, da Nóbrega BM, Aline Barbosa M, de Oliveira AR, de Oliveira Ramos AM, de Brito Vieira WH (2013) Low-level lasertherapy and micro current in burn wound healing in rats. Associated or isolated therapy?”. Fisioter Pesq 20(1):24–30

    Article  Google Scholar 

  50. Melo Mde O, Pompeo KD, Brodt GA, Baroni BM, da Silva Junior DP, Vaz MA (2015) Effects of neuromuscular electrical stimulation and low-level laser therapy on the muscle architecture and functional capacity in elderly patients with knee osteoarthritis: a randomized controlled trial. Clin Rehabil 29(6):570–80. doi:10.1177/0269215514552082,2015

    Article  PubMed  Google Scholar 

  51. de Abreu Freitas RP, Aline Barbosa M, de Oliveira AR, de Oliveira Ramos AM, de Brito Vieira WH (2014) Comparative study of Low-level laser therapy and microcurrent on the healing of skin burns in rats”. Acta Scientiarum Health Sciences, Maringá 36(1):5–10

    Article  Google Scholar 

  52. Yao Y, Xing D, He Y (2001) AM ultrasound-modulated optical tomography with real- time FFT”. Chinese Science Bulletin 46(22):1869–1872

    Article  Google Scholar 

  53. Katheryne Wilson E, Kimberly Homan A, Stanislav Emelianov Y (2010) Remotely Triggered Contrast Nano Agent for Ultrasound and Photoacoustic Imaging”, IEEE International Ultrasonics Symposium Proceedings., pp 1003–1006

    Google Scholar 

  54. Chulhong K, Erpelding TN, Ladislav J, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system”. Biomed Opt Express 1(1):278–284. doi:10.1364/BOE.1.000278

    Article  Google Scholar 

  55. Moshe L, Eitan Y, Dan Ben Amital E (2005) Treatment of Facial Venous Malformations with Combined Radiofrequency Current and 900 nm Diode Laser”. Dermatol Surg 31:1308–1312

    Article  Google Scholar 

  56. Alex W (2004) Electromagnetic Waves for Therapy. In: Biophysical Bases of Electrotherapy”. Excell Biomedical Publications, Chapter 11, Mount Waverley, pp 271–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munqith Saleem Dawood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, M.S. The effects of ultrasound and alternating current on the laser penetration in the tissue. Lasers Med Sci 31, 955–964 (2016). https://doi.org/10.1007/s10103-016-1937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1937-4

Keywords

Navigation