Skip to main content

Advertisement

Log in

Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the progression of enamel erosion after treatment with gels containing sodium fluoride (NaF; 9047 ppm F) and stannous chloride (SnCl2; 3000 ppm Sn), associated or not with Nd:YAG laser irradiation. Sixty enamel specimens were prepared from bovine incisors and protected by a tape, leaving an exposed surface area of 4 × 1 mm. The specimens were immersed in 1 % citric acid (pH = 2.3) for 10 min to create an initial erosion lesion. After, they were randomly divided into six groups: (C) control: gel without active ingredient; (F): NaF gel; (F + Sn): NaF + SnCl2 gel; (laser): Nd:YAG laser irradiation (0.5 W; 50 mJ; ∼41.66 J/cm2; 10 Hz; 40 s); (F + laser): NaF gel + Nd:YAG; (F + Sn + laser): NaF + SnCl2 gel + Nd:YAG. All gels had pH = 4.5 and were applied for 1 min. Laser irradiation was performed after gel application. The specimens were then submitted to a 5-day erosion-remineralization cycling model using 1 % citric acid (pH = 2.3), six times per day. Enamel surface loss (SL) was analyzed by optical profilometry in the end of the cycling (in μm). Data were analyzed by one-way ANOVA and Holm-Sidak tests (alpha = 0.05). The control and the laser groups presented the highest enamel loss (means ± SD = 53.52 ± 3.65 and 53.30 ± 2.73, respectively), followed by F + Sn (44.76 ± 2.83). The groups F (36.76 ± 2.28), F + laser (36.25 ± 3.59), and F + Sn + laser (39.83 ± 4.62) showed the lowest enamel loss, with no significant difference among them (p > 0.05). In conclusion, NaF by itself or associated with SnCl2 and Nd:YAG laser was able to reduce enamel erosion progression. Nd:YAG laser alone did not show a protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eccles JD (1978) The treatment of dental erosion. J Dent 6(3):217–221

    Article  CAS  PubMed  Google Scholar 

  2. Shellis RP, Addy M (2014) The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci 25:32–45

    Article  PubMed  Google Scholar 

  3. Lussi A, Carvalho TS (2014) Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci 25:1–15

    Article  PubMed  Google Scholar 

  4. Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion—an overview with emphasis on chemical and histopathological aspects. Caries Res 45(Suppl 1):2–12

    Article  PubMed  Google Scholar 

  5. Huysmans MC, Young A, Ganss C (2014) The role of fluoride in erosion therapy. Monogr Oral Sci 25:230–243

    Article  PubMed  Google Scholar 

  6. Ganss C, Schlueter N, Klimek J (2007) Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions—a comparison of in vitro and in situ results. Arch Oral Biol 52(1):9–14

    Article  CAS  PubMed  Google Scholar 

  7. Babcock FD, King JC, Jordan TH (1978) The reaction of stannous fluoride and hydroxyapatite. J Dent Res 57(9-10):933–938

    Article  CAS  PubMed  Google Scholar 

  8. Schlueter N, Hardt M, Lussi A, Engelmann F, Klimek J, Ganss C (2009) Tin-containing fluoride solutions as anti-erosive agents in enamel: an in vitro tin-uptake, tissue-loss, and scanning electron micrograph study. Eur J Oral Sci 117(4):427–434

    Article  CAS  PubMed  Google Scholar 

  9. Ramos-Oliveira TM, Ramos TM, Esteves-Oliveira M, Apel C, Fischer H, de Eduardo C P, Steagall W, Freitas PM et al (2014) Potential of CO2 lasers (10.6 microm) associated with fluorides in inhibiting human enamel erosion. Braz Oral Res 28(1):1–6

    Article  PubMed  Google Scholar 

  10. Scatolin RS, Colucci V, Lepri TP, Alexandria AK, Maia LC, Galo R, Borsatto MC, Corona SA (2014) Er:YAG laser irradiation to control the progression of enamel erosion: an in situ study. Lasers Med Sci 30(5):1465–1473

    Article  PubMed  Google Scholar 

  11. Rios D, Magalhaes AC, Machado MA, da Silva SM, Lizarelli Rde F, Bagnato VS, Buzalaf MA (2009) In vitro evaluation of enamel erosion after Nd:YAG laser irradiation and fluoride application. Photomed Laser Surg 27(5):743–747

    Article  PubMed  Google Scholar 

  12. Sobral MA, Lachowski KM, de Rossi W, Braga SR, Ramalho KM (2009) Effect of Nd:YAG laser and acidulated phosphate fluoride on bovine and human enamel submitted to erosion/abrasion or erosion only: an in vitro preliminary study. Photomed Laser Surg 27(5):709–713

    Article  PubMed  Google Scholar 

  13. Nelson DG, Wefel JS, Jongebloed WL, Featherstone JD (1987) Morphology, histology and crystallography of human dental enamel treated with pulsed low-energy infrared laser radiation. Caries Res 21(5):411–426

    Article  CAS  PubMed  Google Scholar 

  14. Tagomori S, Iwase T (1995) Ultrastructural change of enamel exposed to a normal pulsed Nd-YAG laser. Caries Res 29(6):513–520

    Article  CAS  PubMed  Google Scholar 

  15. Castellan CS, Luiz AC, Bezinelli LM, Lopes RM, Mendes FM, De P, Eduardo C, Freitas PM (2007) In vitro evaluation of enamel demineralization after Er:YAG and Nd:YAG laser irradiation on primary teeth. Photomed Laser Surg 25(2):85–90

    Article  CAS  PubMed  Google Scholar 

  16. Goodman BD, Kaufman HW (1977) Effects of an argon laser on the crystalline properties and rate of dissolution in acid of tooth enamel in the presence of sodium fluoride. J Dent Res 56(10):1201–1207

    Article  CAS  PubMed  Google Scholar 

  17. Gao XL, Pan JS, Hsu CY (2006) Laser-fluoride effect on root demineralization. J Dent Res 85(10):919–923

    Article  PubMed  Google Scholar 

  18. Tepper SA, Zehnder M, Pajarola GF, Schmidlin PR (2004) Increased fluoride uptake and acid resistance by CO2 laser-irradiation through topically applied fluoride on human enamel in vitro. J Dent 32(8):635–641

    Article  CAS  PubMed  Google Scholar 

  19. Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS (2004) Effects of CO2 laser on fluoride uptake in enamel. J Dent 32(2):161–167

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Hsu CY, Teo CM, Teoh SH (2013) Potential mechanism for the laser-fluoride effect on enamel demineralization. J Dent Res 92(1):71–75

    Article  CAS  PubMed  Google Scholar 

  21. Wiegand A, Magalhaes AC, Navarro RS, Schmidlin PR, Rios D, Buzalaf MA, Attin T (2010) Effect of titanium tetrafluoride and amine fluoride treatment combined with carbon dioxide laser irradiation on enamel and dentin erosion. Photomed Laser Surg 28(2):219–226

    Article  CAS  PubMed  Google Scholar 

  22. Pancote LP, Manarelli MM, Danelon M, Delbem AC (2014) Effect of fluoride gels supplemented with sodium trimetaphosphate on enamel erosion and abrasion: in vitro study. Arch Oral Biol 59(3):336–340

    Article  CAS  PubMed  Google Scholar 

  23. Ganss C, Klimek J, Schlueter N (2014) Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 48(2):163–169

    Article  CAS  PubMed  Google Scholar 

  24. Palazon MT, Scaramucci T, Aranha AC, Prates RA, Lachowski KM, Hanashiro FS, Youssef MN (2013) Immediate and short-term effects of in-office desensitizing treatments for dentinal tubule occlusion. Photomed Laser Surg 31(6):274–282

    Article  CAS  PubMed  Google Scholar 

  25. Scaramucci T, Borges AB, Lippert F, Frank NE, Hara AT (2013) Sodium fluoride effect on erosion-abrasion under hyposalivatory simulating conditions. Arch Oral Biol 58(10):1457–1463

    Article  CAS  PubMed  Google Scholar 

  26. Magalhaes AC, Romanelli AC, Rios D, Comar LP, Navarro RS, Grizzo LT, Aranha ACC, Buzalaf MA (2011) Effect of a single application of TiF4 and NaF varnishes and solutions combined with Nd:YAG laser irradiation on enamel erosion in vitro. Photomed Laser Surg 29(8):537–544

    Article  CAS  PubMed  Google Scholar 

  27. Majori M, Manzon L, Pane S, Bedini R (2005) Effects of Nd:YAG laser on dental enamel. J Appl Biomater Biomech 3(2):128–133

    CAS  PubMed  Google Scholar 

  28. Bedini R, Manzon L, Fratto G, Pecci R (2010) Microhardness and morphological changes induced by Nd:Yag laser on dental enamel: an in vitro study. Ann Ist Super Sanita 46(2):168–172

    PubMed  Google Scholar 

  29. Kwon YH, Kwon OW, Kim HI, Kim KH (2003) Nd:YAG laser ablation and acid resistance of enamel. Dent Mater J 22(3):404–411

    Article  CAS  PubMed  Google Scholar 

  30. Zezell DM, Boari HG, Ana PA, de Eduardo C P, Powell GL (2009) Nd:YAG laser in caries prevention: a clinical trial. Lasers Surg Med 41(1):31–35

    Article  PubMed  Google Scholar 

  31. Raucci-Neto W, de Castro-Raucci LM, Lepri CP, Faraoni-Romano JJ, Gomes da Silva JM, Palma-Dibb RG (2015) Nd:YAG laser in occlusal caries prevention of primary teeth: a randomized clinical trial. Lasers Med Sci 30(2):761–768

    Article  PubMed  Google Scholar 

  32. Fowler BO, Kuroda S (1986) Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38(4):197–208

    Article  CAS  PubMed  Google Scholar 

  33. Borges AB, Scaramucci T, Lippert F, Zero DT, Hara AT (2014) Erosion protection by calcium lactate/sodium fluoride rinses under different salivary flows in vitro. Caries Res 48(3):193–199

    Article  CAS  PubMed  Google Scholar 

  34. Scaramucci T, Borges AB, Lippert F, Zero DT, Aoki IV, Hara AT (2015) Anti-erosive properties of solutions containing fluoride and different film-forming agents. J Dent 43(4):458–465

    Article  CAS  PubMed  Google Scholar 

  35. Ganss C, Neutard L, von Hinckeldey J, Klimek J, Schlueter N (2010) Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 89(11):1214–1218

    Article  CAS  PubMed  Google Scholar 

  36. Meyer-Lueckel H, Colfen H, Verch A, Tschoppe P (2010) Effects of carboxymethyl cellulose-based saliva substitutes with varying degrees of saturation with respect to calcium phosphates on artificial enamel lesions. Caries Res 44(2):127–134

    Article  CAS  PubMed  Google Scholar 

  37. Barbour ME, Shellis RP, Parker DM, Allen GC, Addy M (2005) An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution. Eur J Oral Sci 113(6):457–461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPESP (State of São Paulo Research Foundation, Grants #2014/14055-4, #2012/20632-9 and #2011/17699-1) and LELO – FOUSP (Special Laboratory of Lasers in Dentistry at the School of Dentistry of the University of São Paulo, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tais Scaramucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

João-Souza, S.H., Bezerra, S.J., Borges, A.B. et al. Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion. Lasers Med Sci 30, 2227–2232 (2015). https://doi.org/10.1007/s10103-015-1791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1791-9

Keywords

Navigation