Skip to main content

Advertisement

Log in

Intense pulsed light induces synthesis of dermal extracellular proteins in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Intense pulsed light (IPL) devices have been shown to be highly effective for the skin rejuvenation. In our study, we try to elucidate effects of IPL in fibroblast proliferation, in gene expression, and in extracellular matrix protein production. 1BR3G human skin fibroblasts were used to test the effects of an IPL device (MiniSilk FT, Deka®). Fibroblasts were divided into three groups: group 1 was irradiated with filter 800–1200 nm (frequency 10 Hz, 15 s, fluence 60.1 J/cm) twice; group 2 was irradiated with filter 550–1200 nm (double pulse 5 ms + 5 ms, delay 10 ms, fluence 13 J/cm2) twice; and group 3 was irradiated with filter 550–1200 nm (frequency 10 Hz, 15 s, fluence 60.1 J/cm2) twice. To determine changes in gene expression, messenger RNA (mRNA) levels for collagen types I and III and metalloproteinase 1 (MMP-1) were performed 48 h after irradiation. To determine changes in hyaluronic acid, versican, and decorin, mRNA and ELISA tests were performed after 48 h of treatment. In addition to this, a Picro-Sirius red staining for collagen was made. The study showed an increase of mRNA and hyaluronic acid, decorin, and versican production. With RT-PCR assays, an increase mRNA for collagen type I, type III, and MMP-1 was observed. Collagen and hyaluronic synthesis was increased in all groups with no differences among them, while decorin and versican synthesis was higher in those groups irradiated with 550–1200-nm filters with no dependence of type pulse or total energy dose. IPL applied in vitro cultured cells increases fibroblasts activity. Synthesis of extracellular proteins seems to be produced more specifically in determined wavelengths, which could demonstrate a biochemical mechanism light depending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berneburg M, Plettenberg H, Krutmann J (2000) Photoaging of human skin. Photodermatol Photoimmunol Photomed 16:239–244

    Article  CAS  PubMed  Google Scholar 

  2. Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC (1998) Water and protein structure in photoaged and chronically aged skin. J Investig Dermatol 111:1129–1133

    Article  CAS  PubMed  Google Scholar 

  3. Uitto J (2008) The role of elastin and collagen in cutaneous aging: intrinsic aging versus photoexposure.J. Drugs Dermatol 7(2 Suppl):s12–s16

    Google Scholar 

  4. Carrino DA, Sorrell JM, Caplan AI (2000) Age-related changes in the proteoglycans of human skin. Arch Biochem Biophys 373:91–101

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein EF, Uitto J (1996) The effect of photodamage on dermal extracellular matrix. Clin Dermatol 14:143–151

    Article  CAS  PubMed  Google Scholar 

  6. Babilas P, Schreml S, Szeimies RM, Landthaler M (2010) Intense pulsed light (IPL): a review. Lasers Surg Med 42:93–104

    Article  PubMed  Google Scholar 

  7. Babilas P, Szeimies RM (2010) The use of photodynamic therapy in dermatology. G Ital Dermatol Venereol 145:613–630

    CAS  PubMed  Google Scholar 

  8. Goldberg DJ (2008) Laser dermatology. Pearls and Problems. Blackwell Publishing, Masachusets

    Google Scholar 

  9. Hernandez Perez E, Ibiett EV (2002) Gross and microscopic findings in patients submitted to nonablative full face resurfacing using intensed pulsed light. Dermatol Surg 28:651–655

    PubMed  Google Scholar 

  10. Clementoni MT, Lavagno R, Catenacci M, Kantor R, Mariotto G, Shvets I (2011) 3D in vivo optical skin imaging for intense pulsed light and fractional ablative resurfacing of photodamaged skin. Facial Plast Surg Clin North Am 19:737–757

    Article  PubMed  Google Scholar 

  11. El-Domyati M, El-Ammawi TS, Moawad O, Medhat W, Mahoney MG, Uitto J (2011) Intense pulsed light photorejuvenation: a histological and immunohistochemical evaluation. J Drugs Dermatol 10:1246–1252

    PubMed  Google Scholar 

  12. Rangarajan S, Trivedi A, Ubeid AA, Hantash BM (2013) Minimally invasive bipolar fractional radiofrequency treatment upregulates anti-senescence pathways. Lasers Surg Med 45:201–206

    Article  PubMed  Google Scholar 

  13. Cuerda E, Díaz G, Palomar MA, Linares R (2015) Increased fibroblast proliferation and activity after applying intense pulsed light 800-1200 nm. Ann Anat 198:66–72

    Article  Google Scholar 

  14. Scattone L, de AvelarAlchorne MM, Michalany N, Miot HA, Higashi VS (2012) Histopathologic changes induced by intense pulsed light in the treatment of poikiloderma of Civatte. Dermatol Surg 38:1010–1016

    Article  CAS  PubMed  Google Scholar 

  15. Wong WR, Shyu WL, Tsai JW, Hsu KH, Pang JH (2000) Intense pulsed light effects on the expression of extracellular matrix proteins and transforming growth factor beta-1 in skin dermal fibroblasts cultured within contracted collagen lattices. Dermatol Surg 35:816–825

    Article  Google Scholar 

  16. Orringer JS, Hammerberg C, Hamilton T, Johnson TM, Kang S, Sachs DL, Fisher G, Voorhees JJ (2008) Molecular effects of photodynamic therapy for photoaging. Arch Dermatol 144:1296–1302

    Article  CAS  PubMed  Google Scholar 

  17. Orringer JS, Voorhees JJ, Hamilton T, Hammerberg C, Kang S, Johnson TM, Karimipour DJ, Fisher G (2005) Dermal matrix remodelling after nonablative laser therapy. J Am Acad Dermatol 53:775–782

    Article  PubMed  Google Scholar 

  18. Mallinjoud P, Villemin JP, Mortada H, Polay Espinoza M, Desmet FO, Samaan S, Chautard E, Tranchevent LC, Auboeuf D (2014) Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin. Genome Res 24:511–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Feng S, Zhou L, Nice EC, Huang C (2015) Fibroblast growth factor receptors: multifactorial-contributors to tumour initiation and progression. Histol Histopathol 30:13–31

    CAS  PubMed  Google Scholar 

  20. Tiede S, Ernst N, Bayat A, Paus R, Tronnier V, Zechel C (2008) Basic fibroblast growth factor: a potential new therapeutic tool for the treatment of hypertrophic and keloid scars. Ann Anat 191:33–44

    Article  PubMed  Google Scholar 

  21. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signalling by fibroblast growth factor receptors. Cytokine Growth Factor Res 16:139–149

    Article  CAS  Google Scholar 

  22. Carrino DA, Calabro A, Darr AB, Dours-Zimmermann MT, Sandy JD, Zimmermann DR, Sorrell JM, Hascall VC, Caplan AI (2011) Age-related differences in human skin proteoglycans. Glycobiology 21:257–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ (1995) Reduced type I and type III procollagens in photodamaged adult human skin. J Investig Dermatol 105:285–290

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein EF, Underhill CB, Hahn PJ, Brown DB, Uitto J (1996) Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol 135:255–262

    Article  CAS  PubMed  Google Scholar 

  25. Luo D, Cao Y, Wu D, Xu Y, Chen B, Xue Z (2009) Impact of intense pulse light irradiation on BALB/c mouse skin-in vivo study on collagens, matrix metalloproteinases and vascular endothelial growth factor. Laser Med Sci 24:101–108

    Article  Google Scholar 

  26. Orringer JS, Rittié L, Hamilton T, Kariminopur DJ, Voorhees JJ, Fisher GJ (2011) Intraepidermal Erbium: YAG laser resurfacing. Impact on the dermal matrix. J Am Acad Dermatol 64:119–128

    Article  PubMed  Google Scholar 

  27. Chang ALS, Bitter PH, Qu K, Lin M, Rapicavoli NA, Chanhg HY (2012) Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Investig Dermatol 133:394–402

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pérez García LJ (2004) Metaloproteinasas y piel. Actas Dermosifiliogr 95:413–423

    Article  Google Scholar 

  29. Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A (2014) Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Investig Dermatol 134:643–650

    Article  CAS  PubMed  Google Scholar 

  30. Lu J, Yu X, Kang J, Ouyang Z, Geng X, Xiang Y, Huang J (2010) Influence of intense pulsed light on the secretion of TGF-beta1 in cultured human fibroblasts and intervention of JNK inhibitor. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35:419–423

    CAS  PubMed  Google Scholar 

  31. Ohnishi Y, Tajima S, Akiyama M, Ishibashi A, Kobayashi R, Horii I (2000) Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch Dermatol Res 292:27–31

    Article  CAS  PubMed  Google Scholar 

  32. Jansen PL, Rosch R, Jansen M, Binnebösel M, Junge K, Alfonso Jaume A, Klinge U, Lovett DH, Mertens PR (2007) Regulation of MMP-2 gene transcription in dermal wounds. J Invest Dermatol 127:1762–1767

    CAS  PubMed  Google Scholar 

  33. Huang J, Luo X, Lu J, Chen J, Zuo C, Xiang Y, Yang S, Tan L, Kang J, Bi Z (2011) IPL irradiation rejuvenates skin collagen via the bidirectional regulation of MMP-1 and TGF-beta1 mediated by MAPKs in fibroblasts. Lasers Med Sci 26:381–387

    Article  PubMed  Google Scholar 

  34. Iyer S, Carranza D, Kolodney M, Macgregor D, Chipps L, Soriano T (2007) Evaluation of procollagen I deposition after intense pulsed light treatments at varying parameters in porcine model. J Cosmet Laser Ther 9:75–78

    Article  PubMed  Google Scholar 

  35. Jung JY, Oh JH, Kim YK, Shin MH, Lee D, Chung JH (2012) Acute UV irradiation increases heparansulfate proteoglycan levels in human skin. J Korean Med Sci 27:300–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Knott A, Reuschlein K, Lucius R, Stab F, Wenck H, Gallinat S (2009) Deregulation of versican and elastin binding protein in solar elastosis. Biogerontology 10:181–190

    Article  CAS  PubMed  Google Scholar 

  37. Oh JH, Kim YK, Jung JY, Shin JE, Chung JH (2011) Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol 20:454–456

    Article  PubMed  Google Scholar 

  38. Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144:666–672

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wang F, Garza L, Kang S, Varani J, Orringer JS, Fisher GJ, Voorhees JJ (2007) In vivo stimulation of the novo collagen production caused by cross-linked Hyaluronic acid dermal filler injections in photodamaged human skin. Arch Dermatol 143:155–163

    CAS  PubMed  Google Scholar 

  40. Quan T, Wang F, Shao Y, Rittié L, Xia W, Orringer JS, Voorhees JJ, Fisher GJ (2013) enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells and keratinocytes in aged human skin in vivo. J Investig Dermatol 133:658–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zimmermann DR, Ruoslahti E (1989) Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 8:2975–2981

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Hasegawa K, Yoneda M, Kuwabara H, Miyaishi O, Itano N, Ohno A, Zako M, Isogai Z (2007) Versican, a major hyaluronan-binding component in the dermis, loses its hyaluronan-binding ability in solar elastosis. J Investig Dermatol 127:1657–1663

    CAS  PubMed  Google Scholar 

  43. Merle B, Durusel L, Delmas PD, Clezardin P (1999) Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J Cell Biochem 75:538–546

    Article  CAS  PubMed  Google Scholar 

  44. Reed CC, Iozzo RV (2002) The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J 19:249–255

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346:281–284

    Article  CAS  PubMed  Google Scholar 

  46. Geng Y, McQuillan D, Roughley PJ (2006) SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol 25:484–491

    Article  CAS  PubMed  Google Scholar 

  47. Stuart K, Paderi J, Snyder PW, Freeman L, Panitch A (2011) Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring. PLoS ONE 6:22139

    Article  Google Scholar 

  48. Li Y, Liu Y, Xia W, Lei D, Voorhees JJ, Fisher GJ (2013) Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep 3:2422

    PubMed Central  PubMed  Google Scholar 

  49. Kuroda K, Shinkai H (1997) Decorin and glycosaminoglycan synthesis in skin fibroblasts from patients with systemic sclerosis. Arch Dermatol Res 289:481–485

    Article  CAS  PubMed  Google Scholar 

  50. Ito Y, Takeuchi J, Yamamoto K, Hashizume Y, Sato T, Tauchi H (2001) Age differences in immunohistochemical localizations of large proteoglycan, PG-M/versican, and small proteoglycan, decorin, in the dermis of rats. Exp Anim 50:159–166

    Article  CAS  PubMed  Google Scholar 

  51. Kawashima Y, Ohto N, Kiso A, Kambara T, Sugano S, Sawada H, Morira A (2006) Molecular alterations of decorin in photoaging process. J Dermatol Sci 2:S51–S56

    CAS  Google Scholar 

  52. Gambichler T, Tomi NS, Skrygan M, Altmeyer P, Kreuter A (2007) Significant decrease of decorin expression in human skin following short-term ultraviolet exposures. J Dermatol Sci 45:203–205

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Xia W, Liu Y, Remmer HA, Voorhees J, Fisher GJ (2013) Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase. PLoS ONE 8:72563

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Josep Baullida for providing 1BR3G human cell line. We also show gratitude to Beatriz Santamaría from the Universidad Rey Juan Carlos for optimal technical assistance and Paloma Barjola for expert statistical assistance. We also thank Jose Antonio Más and Maria Conejero from Unidad de Genómica y Citometría (CAT, URJC) for excellent cytometry and RT-PCR assistance. This work was supported by Lasertech Ibérica, SL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cuerda-Galindo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuerda-Galindo, E., Díaz-Gil, G., Palomar-Gallego, M.A. et al. Intense pulsed light induces synthesis of dermal extracellular proteins in vitro. Lasers Med Sci 30, 1931–1939 (2015). https://doi.org/10.1007/s10103-015-1787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1787-5

Keywords

Navigation