Skip to main content
Log in

Photodynamic effects of zinc phthalocyanines on intracellular amastigotes of Leishmania amazonensis and Leishmania braziliensis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study investigated the photoactivity of four zinc phthalocyanines (PcZns) on a murine macrophage cell line infected with Leishmania amazonensis or Leishmania braziliensis. Infected and uninfected cells were incubated with PcZns at different concentrations (1–10 μM) for 3 h and then exposed to an LED device in continuous wave mode at 660 nm with a fluency of 50 J/cm2 (25 mV). Enzymatic activity was determined by MTT assay 24 h after light treatment. The results demonstrated that all PcZns exhibited high photoactivity, particularly when used at 10 μM. The photodynamic effects were different for uninfected cells versus parasite-infected cells and among the four PcZns. Uninfected cells were more sensitive to photoactivity than infected cells. Although PcZns photodynamic therapy provided promising results, further studies are necessary to better understand its mechanism of action in the treatment of leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano P, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671. doi:10.1371/journal.pone.0035671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fernández MM, Malchiodi EL, Algranati ID (2011) Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells. J Antimicrob Chemother 55(1):86–93. doi:10.1128/AAC.00506-10

    Article  Google Scholar 

  3. Gardlo K, Horska Z, Enk CD, Rauch L, Megahed M, Ruzicka T, Fritsch C (2003) Treatment of cutaneous leishmaniasis by photodynamic therapy. J Am Acad Dermatol 48:893–896. doi:10.1067/mjd.2003.218

    Article  PubMed  Google Scholar 

  4. Gontijo B, Carvalho MLR (2003) Leishmaniose Tegumentar Americana. Rev Soc Bras Med Trop 36(1):71–80

    Article  PubMed  Google Scholar 

  5. Pinto JG, Soares CP, Mittmann J (2011) Assessment of Leishmania major and Leishmania braziliensis promastigote viability after photodynamic treatment with aluminum phthalocyanine tetrasulfonate (AlPcS4). J Venom Anim Toxins Incl Trop Dis 17(3):300–307. doi:10.1590/S1678-91992011000300010

    CAS  Google Scholar 

  6. Ministério da Saúde (2011) Casos de Leishmaniose Tegumentar Americana. http://portal.saude.gov.br/portal/arquivos/pdf/lta_casos08_09_11.pdf. Accessed 28 August 2013

  7. Ministério da Saúde (2011) Casos de Leishmaniose visceral. http://portal.saude.gov.br/portal/arquivos/pdf/lv_casos_05_09_11.pdf. Accessed 28 August 2013

  8. Centro de Vigilância Epidemiológica (2012) São Paulo: Secretaria da Saúde. http://www.cve.saude.sp.gov.br/htm/zoo/lta_gve_notres.htm. Accessed 28 August 2013

  9. Moreira W, Leprohon P, Ouellette M (2011) Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis 2:e201. doi:10.1038/cddis.2011.83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Seifert K, Munday J, Syeda T, Croft SL (2011) In vitro interactions between sitamaquine and amphotericin B, sodium stibogluconate, miltefosine, paromomycin and pentamidine against Leishmania donovani. J Antimicrob Chemother 66(4):850–854. doi:10.1093/jac/dkq542

    Article  CAS  PubMed  Google Scholar 

  11. Akilov OE, Yousaf W, Lukjan SX, Verma S, Hasan T (2009) Optimization of topical photodynamic therapy with 3,7-bis(di-n-butylamino)phenothiazin-5-ium bromide for cutaneous Leishmaniasis. Lasers Surg Med 41:358–365. doi:10.1002/lsm.20775

    Article  PubMed  Google Scholar 

  12. Peloi LS, Biondo CEG, Kimura E, Politi MJ, Lonardoni MVC, Aristides SMA, Dorea RCC, Hioka N, Silveira TGV (2011) Photodynamic therapy for American cutaneous leishmaniasis: the efficacy of methylene blue in hamsters experimentally infected with Leishmania (Leishmania) amazonensis. Exp Parasitol 128(4):353–356. doi:10.1016/j.exppara.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  13. Gardner DM, Taylor VM, Cedeño DL, Padhee S, Robledo SM, Jones MA, Lash TD, Vélez ID (2010) Association of acenaphthoporphyrins with liposomes for the photodynamic treatment of leishmaniasis. Photochem Photobiol 86(3):645–652. doi:10.1111/j.1751-1097.2010.00705.x

    Article  CAS  PubMed  Google Scholar 

  14. Machado AHA, Moraes KCM, Soares CP, Beltrame Junior M, da Silva NS (2010) Cellular changes after photodynamic therapy on HEp-2 cells using the new ZnPcBr8 phthalocyanine. Photomed Laser Surg 28:S143–S149. doi:10.1089/pho.2009.2561

    Article  CAS  PubMed  Google Scholar 

  15. Batista MS, Wainwright M (2011) Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz J Med Biol Res 44:1–10. doi:10.1590/S0100-879X2010007500141

    Article  Google Scholar 

  16. Çamur M, Ahsen V, Durmus M (2011) The first comparison of photophysical and photochemical properties of non-ionic, ionic and zwitterionic gallium (III) and indium (III) phthalocyanines. J Photochem Photobiol A 219:217–227. doi:10.1016/j.jphotochem.2011.02.014

    Article  Google Scholar 

  17. Simpson ER, Wilson BC, Corriveau C, Murphy J (1987) Thermal damage and haematoporphyrin-derivative-sensitized photochemical damage in laser irradiation of rabbit retina. Laser Med Sci 2(1):33–40. doi:10.1007/BF02594129

    Article  Google Scholar 

  18. Silva EPO, Barja PR, Cardoso LE, Beltrame M Jr (2012) Percutaneous permeation measurement of topical phthalocyanine by photoacoustic technique. J Appl Phys 112:104702. doi:10.1063/1.4761974

    Article  Google Scholar 

  19. Jiang XJ, Huang JD, Zhu YJ, Tang FX, Ng DKP, Sun JC (2006) Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorg Med Chem Lett 16:2450–2453. doi:10.1016/j.bmcl.2006.01.075

    Article  CAS  PubMed  Google Scholar 

  20. Durmus M, Yaman H, Göl C, Ahsen V, Nyokong T (2011) Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: synthesis, photophysical, photochemical and bovine serum albumin binding properties. Dyes Pigments 91:153–163. doi:10.1016/j.dyepig.2011.02.007

    Article  CAS  Google Scholar 

  21. Bolfarini GC, Siqueira-Moura MP, Demets GJ, Morais PC, Tedesco AC (2012) In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 115:1–4. doi:10.1016/j.jphotobiol.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  22. Karaoğlana GK, Gümrükçüa G, Kocab A, Gülc A, Avcıataa U (2011) Synthesis and characterization of novel soluble phthalocyanines with fused conjugated unsaturated groups. Dyes Pigments 90(1):11–20. doi:10.1016/j.dyepig.2010.10.002

    Article  Google Scholar 

  23. Akilov OE, Kosaka S, O’riordan K, Hasan T (2007) Parasiticidal effect of d-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol 16:651–660. doi:10.1111/j.1600-0625.2007.00578.x

    Article  CAS  PubMed  Google Scholar 

  24. Machado AHA, Braga FMP, Soares CP, Pelisson MMM, Beltrame M Jr, da Silva NS (2007) Photodynamic therapy with a new photosensitizing agent. Photomed Laser Surg 25:220–228. doi:10.1089/pho.2006.2035

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho DPL, Pinto JG, Sorge CPC, Benedito FRR, Khouri S, Strixino JF (2014) Study of photodynamic therapy in the control of isolated microorganisms from infected wounds - an in vitro study. Laser Med Sci 29:113–120. doi:10.1007/s10103-013-1283-8

    Article  Google Scholar 

  26. Simioni AR, Primo FL, Tedesco AC (2012) Silicon (IV) phthalocyanine-loaded-nanoparticles for application in photodynamic process. J Laser Appl 24:012004. doi:10.2351/1.3669442

    Article  Google Scholar 

  27. Escobar P, Hernández IP, Rueda CM, Martínez F, Páez E (2006) Photodynamic activity of aluminium (III) and zinc (II) phthalocyanines in Leishmania promastigotes. Biomedica 26:49–56

    Article  PubMed  Google Scholar 

  28. Akilov OE, Kosaka S, O’Riordan K, Hasan T (2007) Photodynamic therapy for cutaneous leishmaniasis: the effectiveness of topical phenothiaziniums in parasite eradication and Th1 immune response stimulation. Photochem Photobiol Sci 6:1067–1075. doi:10.1039/B703521G

    Article  CAS  PubMed  Google Scholar 

  29. Costa AC, Chibebe J Jr, Pereira CA, Machado AK, Beltrame M Jr, Junqueira JC, Jorge AO (2010) Susceptibility of planktonic cultures of Streptococcus mutans to photodynamic therapy with a light-emitting diode. Braz Oral Res 24(4):413–418. doi:10.1590/S1806-83242010000400007

    Article  PubMed  Google Scholar 

  30. Souza VL, Veras PS, Welby-Borges M, Silva TM, Leite BR, Ferraro RB, Meyer-Fernandes JR, Barral A, Costa JM, de Freitas LA (2011) Immune and inflammatory responses to Leishmania amazonensis isolated from different clinical forms of human leishmaniasis in CBA mice. Mem Inst Oswaldo Cruz 106(1):23–31. doi:10.1590/S0074-02762011000100004

    Article  PubMed  Google Scholar 

  31. Neves SMT, Sguilla FS, Tedesco AC (2006) Photophysical studies of zinc phthalocyanine incorporated into liposomes in the presence of additives. Braz J Med Biol Res 37:273–284. doi:10.1590/S0100-879X2004000200016

    Google Scholar 

  32. Kimani SG, Shmigol TA, Hammond S, Phillips JB, Bruce JI, MacRobert AJ, Malakhov MV, Golding JP (2013) Fully protected glycosylated Zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells. Photochem Photobiol 89(1):139–149. doi:10.1111/j.1751-1097.2012.01204.x

    Article  CAS  PubMed  Google Scholar 

  33. Hooker JD, Nguyen VH, Taylor VM, Cedeño DL, Lash TD, Jones MA, Robledo SM, Vélez ID (2012) New application for expanded porphyrins: sapphyrin and heterosapphyrins as inhibitors of leishmania parasites. Photochem Photobiol 88:194–200. doi:10.1111/j.1751-1097.2011.01034.x

    Article  CAS  PubMed  Google Scholar 

  34. Choudhary S, Nouri K, Elsaie M (2009) Photodynamic therapy in dermatology: a review. Lasers Med Sci 24(6):971–980. doi:10.1007/s10103-009-0716-x

    Article  PubMed  Google Scholar 

  35. Dutta S, Ongarora BG, Li H, Vicente MGH, Kolli BK, Chang KP (2011) Intracellular targeting specificity of novel phthalocyanines assessed in a host-parasite model for developing potential photodynamic medicine. PLoS ONE 6(6):e20786. doi:10.1371/journal.pone.0020786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cuervo P, Fernandes N, Jesus JB (2011) A proteomics view of programmed cell death mechanisms during host-parasite interactions. J Proteomics 75(1):246–256. doi:10.1016/j.jprot.2011.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Juliana Ferreira (Lab. Terapia Fotodinâmica—IP&D/UNIVAP) for the LED equipment used in this study and Alene Alder-Rangel for assistance with English language revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Beltrame Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, E.P.d.O., Mittmann, J., Ferreira, V.T.P. et al. Photodynamic effects of zinc phthalocyanines on intracellular amastigotes of Leishmania amazonensis and Leishmania braziliensis . Lasers Med Sci 30, 347–354 (2015). https://doi.org/10.1007/s10103-014-1665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1665-6

Keywords

Navigation