Skip to main content
Log in

Optical nerve identification in head and neck surgery after Er:YAG laser ablation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Facial nerve function may be hampered by iatrogenic damage during head and neck laser surgery procedures. Optical techniques can serve as a basis for feedback-controlled tissue-specific laser surgery on the jaw bone and the parotid gland. In order to preserve nerve tissue during laser surgery, the alteration of optical tissue properties through laser-tissue interactions have to be taken into account. It was the aim of this study to evaluate the viability of optical tissue differentiation through diffuse reflectance spectroscopy after exposure to laser light as a basis for a feedback system for tissue-specific laser surgery. Spectra of diffuse reflectance (wavelength, 350–650 nm) of nerves, salivary glands, and cortical and cancellous bone of the midfacial region (ex vivo domestic pig heads) were acquired before/after Er:YAG laser (wavelength, 2.94 μm) ablation (each 16,800 spectra). Principal component analysis was computed followed by quadratic discriminant analysis. The tissue classification performance as well as area under the curve (AUC) sensitivity and specificity for tissue differentiation was assessed before and after laser-tissue exposure. A high classification performance was observed before laser ablation (total error, 7.74 %). Nerve tissue was differentiated from bone and salivary glands with results greater than 0.96 in AUC, sensitivity and specificity. After laser exposure, a total classification error of 18.61 % was observed. The differentiation of nerve tissue was reduced with an AUC of >0.94, sensitivity of >0.95, and specificity >0.87. Er:YAG laser ablation only slightly reduces the differentiation performance through diffuse reflectance in the investigated tissue types. The results show the general viability of diffuse reflectance spectroscopy in identifying neural structures in the vicinity of salivary glands and bone as a basis for nerve preservation during feedback-controlled laser surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Minton JP (1986) The laser in surgery. A 23 year perspective. Am J Surg 151:725–729

    Article  CAS  PubMed  Google Scholar 

  2. Kuttenberger JJ, Stubinger S, Waibel A, Werner M, Klasing M, Ivanenko M, Hering P, Von Rechenberg B, Sader R, Zeilhofer HF (2008) Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg 26:129–136

    Article  PubMed  Google Scholar 

  3. Stopp S, Svejdar D, von Kienlin E, Deppe H, Lueth TC (2008) A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data. IEEE Trans Biomed Eng 55:1872–1880

    Article  PubMed  Google Scholar 

  4. Spinelli P, Calarco G, Mancini A, Ni XG (2006) Operative colonoscopy in cancer patients. Minim Invasive Ther Allied Technol 15:339–347

    Article  PubMed  Google Scholar 

  5. Colella G, Cannavale R, Vicidomini A, Lanza A (2007) Neurosensory disturbance of the inferior alveolar nerve after bilateral sagittal split osteotomy: a systematic review. J Oral Maxillofac Surg 65:1707–1715

    Article  PubMed  Google Scholar 

  6. Yoshida T, Nagamine T, Kobayashi T, Michimi N, Nakajima T, Sasakura H, Hanada K (1989) Impairment of the inferior alveolar nerve after sagittal split osteotomy. J Craniomaxillofac Surg 17:271–277

    Article  CAS  PubMed  Google Scholar 

  7. Marchesi M, Biffoni M, Trinchi S, Turriziani V, Campana FP (2006) Facial nerve function after parotidectomy for neoplasms with deep localization. Surg Today 36:308–311

    Article  PubMed  Google Scholar 

  8. Baxter GD, Walsh DM, Allen JM, Lowe AS, Bell AJ (1994) Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol 79:227–234

    CAS  PubMed  Google Scholar 

  9. Menovsky T, van den Bergh WM, Beek JF (1996) Effect of CO2 milliwatt laser on peripheral nerves: part I. A dose-response study. Microsurgery 17:562–567

    Article  CAS  PubMed  Google Scholar 

  10. Menovsky T, Van Den Bergh Weerman M, Beek JF (2000) Effect of CO(2)-milliwatt laser on peripheral nerves: part II. A histological and functional study. Microsurgery 20:150–155

    Article  CAS  PubMed  Google Scholar 

  11. Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2:124–129

    Article  CAS  PubMed  Google Scholar 

  12. Marchesini R, Pignoli E, Tomatis S, Fumagalli S, Sichirollo AE, Di Palma S, Dal Fante M, Spinelli P, Croce AC, Bottiroli G (1994) Ex vivo optical properties of human colon tissue. Lasers Surg Med 15:351–357

    Article  CAS  PubMed  Google Scholar 

  13. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543

    Article  CAS  Google Scholar 

  14. Ebert DW, Roberts C, Farrar SK, Johnston WM, Litsky AS, Bertone AL (1998) Articular cartilage optical properties in the spectral range 300–850 nm. J Biomed Opt 3:326–333

    Article  CAS  PubMed  Google Scholar 

  15. Stelzle F, Tangermann-Gerk K, Adler W, Zam A, Schmidt M, Douplik A, Nkenke E (2010) Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery. Lasers Surg Med 42:319–325

    Article  PubMed  Google Scholar 

  16. Stelzle F, Zam A, Adler W, Tangermann-Gerk K, Douplik A, Nkenke E, Schmidt M (2011) Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery. J Transl Med 9:20

    Article  PubMed Central  PubMed  Google Scholar 

  17. Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E (2012) In vivo optical tissue differentiation by diffuse reflectance spectroscopy: preliminary results for tissue-specific laser surgery. Surg Innov 19:385–393

    Article  PubMed  Google Scholar 

  18. Schomacker KT, Walsh JT, Flotte TJ, Deutsch TF (1990) Thermal damage produced by high-lrradiance continuous wave CO2 laser cutting of tissue. Lasers Surg Med 10:74–84

    Article  CAS  PubMed  Google Scholar 

  19. Ritz JP, Roggan A, Germer CT, Isbert C, Muller G, Buhr HJ (2001) Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy. Lasers Surg Med 28:307–312

    Article  CAS  PubMed  Google Scholar 

  20. Ross EV, McKinlay JR, Sajben FP, Miller CH, Barnette DJ, Meehan KJ, Chhieng NP, Deavers MJ, Zelickson BD (2002) Use of a novel erbium laser in a Yucatan minipig: a study of residual thermal damage, ablation, and wound healing as a function of pulse duration. Lasers Surg Med 30:93–100

    Article  PubMed  Google Scholar 

  21. Lukianova-Hleb EY, Oginsky AO, Olson JS, Lapotko DO (2011) Short laser pulse-induced irreversible photothermal effects in red blood cells. Lasers Surg Med 43:249–260

    Article  PubMed  Google Scholar 

  22. Choi JY, Tanenbaum BS, Milner TE, Dao XV, Nelson JS, Sobol EN, Wong BJ (2001) Theramal, mechanical, optical, and morphologic changes in bovine nucleus pulposus induced by Nd:YAG (lambda = 1.32 microm) laser irradiation. Lasers Surg Med 28:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Ivanenko MM, Fahimi-Weber S, Mitra T, Wierich W, Hering P (2002) Bone tissue ablation with sub-microS pulses of a Q-switch CO(2) laser: histological examination of thermal side effects. Lasers Med Sci 17:258–264

    Article  CAS  PubMed  Google Scholar 

  24. Jiao J, Guo Z (2009) Thermal interaction of short-pulsed laser focused beams with skin tissues. Phys Med Biol 54:4225–4241

    Article  PubMed  Google Scholar 

  25. Stelzle F, Terwey I, Knipfer C, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2012) The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study. J Transl Med 10:123

    Article  PubMed Central  PubMed  Google Scholar 

  26. Development Core Team R (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0

    Google Scholar 

  27. Andrea Peters, Hothorn T (2000) ipred: improved predictors. R package version 0.8-8. http://CRAN.R-project.org/package=ipred. Accessed 18 November 2013

  28. Sergej Potapov, Werner Adler, Lausen B (2009) Daim: diagnostic accuracy of classification models. R package version 1.1.0. http://CRAN.R-project.org/package=Daim. Accessed 18 November 2013

  29. Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N (2002) Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med 30:191–200

    Article  PubMed  Google Scholar 

  30. Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG (1999) High-resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res 82:275–284

    Article  CAS  PubMed  Google Scholar 

  31. Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer, Berlin Heidelberg

    Google Scholar 

  32. Kim BM, Feit MD, Rubenchik AM, Mammini BM, Da Silva LB (1998) Optical feedback signal for ultrashort laser pulse ablation of tissue. Appl Surf Sci 127–129:857–862

    Article  Google Scholar 

  33. Robertson CW, Williams D (1971) Lambert absorption coefficients of water in the infrared. J Opt Soc Am 61:1316–1320

    Article  CAS  Google Scholar 

  34. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

  35. Romanos G, Ko HH, Froum S, Tarnow D (2009) The use of CO(2) laser in the treatment of peri-implantitis. Photomed Laser Surg 3:381–386

    Article  Google Scholar 

  36. Luerssen K, Lubatschowski H, Ptok M (2007) Erbium:YAG laser surgery on vocal fold tissue. HNO 55:443–446

    Article  CAS  PubMed  Google Scholar 

  37. Ruderman S, Gomes AJ, Stoyneva V, Rogers JD, Fought AJ, Jovanovic BD, Backman V (2010) Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements. Biomed Opt Expr 1:489–499

    Article  Google Scholar 

  38. Zhengmao Y, Auner G (2004) Principal component analysis approach for biomedical sample identification. IEEE International Conference on Systems, Man and Cybernetics 10-13 Oct 2:1348-1353

    Google Scholar 

  39. Salomatina E, Yaroslavsky AN (2008) Evaluation of the in vivo and ex vivo optical properties in a mouse ear model. Phys Med Biol 53:2797–2807

    Article  CAS  PubMed  Google Scholar 

  40. Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42:153–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding by the ELAN-Funds, University of Erlangen-Nuremberg (AZ:07.03.06.1) and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) (AZ: STE 1877/2-1) as part of the Excellence Initiative.

Conflict of interests

The authors declare that there is no conflict of interest.

Ethics approval

Ethics approval is not necessary. The experimental study was carried out on tissues that were provided by a slaughterhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Stelzle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzle, F., Knipfer, C., Bergauer, B. et al. Optical nerve identification in head and neck surgery after Er:YAG laser ablation. Lasers Med Sci 29, 1641–1648 (2014). https://doi.org/10.1007/s10103-014-1569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1569-5

Keywords

Navigation