Skip to main content
Log in

Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Alopecia areata (AA) is a common autoimmune disease that presents with non-scarring alopecia. It is characterized by intra- or peri-follicular lymphocytic infiltrates composed of CD4+ and CD8+ T-cells on histology. To this day, few treatments are effective for AA. Here we present findings of using a low-level laser comb to alleviate the symptoms of AA in a C3H/HeJ mouse model for AA. Fourteen C3H/HeJ mice with induced AA were used in this study. Two were killed to confirm AA through histology. The remaining 12 mice were randomized into two groups; group I received HairMax LaserComb (wavelength: 655 nm, beam diameter <5 mm; divergence 57 mrad; nine lasers) for 20 s daily, three times per week for a total of 6 weeks; group II was treated similarly, except that the laser was turned off (sham-treated). After 6 weeks of LaserComb treatment, hair regrowth was observed in all the mice in group I (laser-treated) but none in group II (sham-treated). On histology, increased number of anagen hair follicles was observed in laser-treated mice. On the other hand, sham-treated mice demonstrated hair follicles in the telogen phase with no hair shaft. LaserComb seems to be an effective and convenient device for the treatment of AA in the C3H/HeJ mouse model. Human studies are required to determine the efficacy and safety of this device for AA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wasserman D, Guzman-Sanchez DA, Scott K, McMichael A (2007) Alopecia areata. Int J Dermatol 46:121–131

    Article  PubMed  CAS  Google Scholar 

  2. Lew BL, Shin MK, Sim WY (2009) Acute diffuse and total alopecia: a new subtype of alopecia areata with a favorable prognosis. J Am Acad Dermatol 60:85–93

    Article  PubMed  Google Scholar 

  3. Tosti A, Bellavista S, Iorizzo M (2006) Alopecia areata: a long-term follow-up study of 191 patients. J Am Acad Dermatol 55:438–441

    Article  PubMed  Google Scholar 

  4. Safavi K (1992) Prevalence of alopecia areata in the First National Health and Nutrition Examination Survey. Arch Dermatol 128:702

    Article  PubMed  CAS  Google Scholar 

  5. Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ 3rd (1995) Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc 70:628–633

    Article  PubMed  CAS  Google Scholar 

  6. Price VH (2003) Therapy of alopecia areata: on the cusp and in the future. J Investig Dermatol Symp Proc 8:207–211

    Article  PubMed  CAS  Google Scholar 

  7. Madani S, Shapiro J (2000) Alopecia areata update. J Am Acad Dermatol 42:549–566

    Article  PubMed  CAS  Google Scholar 

  8. de Berker DAR, Messenger AG, Sinclair RD (2004) Disorders of hair. In: Burns DA, Breathnach SM, Cox N, Griffiths CE (eds) Rook's textbook of dermatology Vol. 4, 7th edn. Wiley-Blackwell, Oxford, pp 63.1–63.120

    Google Scholar 

  9. Tosti A, Duque-Estrada B (2010) Dermoscopy in hair disorders. J Egypt Women Dermatol Soc 7:1

    Google Scholar 

  10. Weedon D (2002) Diseases of cutaneous appendages. In: Weedon D (ed) Weedon's skin pathology. Churchill Livingstone, London

    Google Scholar 

  11. Whiting DA (2003) Histopathologic features of alopecia areata: a new look. Arch Dermatol 139:1555–1559

    Article  PubMed  Google Scholar 

  12. Sperling LC (2003) Alopecia areata. In: Sperling LC (ed) An atlas of hair pathology with clinical correlations, 1st edn. Parthenon Publishing, New York, pp 109–138

    Google Scholar 

  13. Ahmed Z, Banik RL, Paul HK, Jaigirdar QH, Begum F, Chowdhury SA (2010) Histopathological changes in different stages of alopecia areata. Mymensingh Med J 19(1):100–105

    PubMed  CAS  Google Scholar 

  14. Paus R, Nickoloff BJ, Ito TA (2005) “Hairy” privilege. Trends Immunol 26:32–40

    Article  PubMed  CAS  Google Scholar 

  15. Harrist TJ, Ruiter DJ, Mihm MC, Bhan AK (1983) Distribution of major histocompatibility antigens in normal skin. Br J Dermatol 109:623–633

    Article  PubMed  CAS  Google Scholar 

  16. Christoph T, Müller-Röver S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Rückert R, Paus R (2000) The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 142(5):862–873

    Article  PubMed  CAS  Google Scholar 

  17. Ito T, Saathoff M, Nickoloff BJ, Takigawa M, Paus R (2005) Novel aspects of hair follicle immune privilege and their relevance to alopecia areata [abstract]. J Invest Dermatol 124(Suppl):A103

    Google Scholar 

  18. Paus R, Christoph T, Muller-Rover S (1999) Immunology of the hair follicle: a short journey into terra incognita. J Investig Dermatol Symp Proc 4:226–234

    Article  PubMed  CAS  Google Scholar 

  19. Deeths MJ, Endrizzi BT, Irvin ML, Steiner LP, Ericson ME, Hordinsky MK (2006) Phenotypic analysis of T-cells in extensive alopecia areata scalp suggests partial tolerance. J Invest Dermatol 126(2):366–373, PubMed PMID: 16374469

    Article  PubMed  CAS  Google Scholar 

  20. Galbraith GM, Palesch Y, Gore EA, Pandey JP (1999) Contribution of interleukin 1beta and KM loci to alopecia areata. Hum Hered 49(2):85–89, PubMed PMID: 10077728

    Article  PubMed  CAS  Google Scholar 

  21. Kim HS, Cho DH, Kim HJ, Lee JY, Cho BK, Park HJ (2006) Immunoreactivity of corticotropin-releasing hormone, adrenocorticotropic hormone and alpha-melanocyte-stimulating hormone in alopecia areata. Exp Dermatol 15(7):515–522, PubMed PMID: 16761960

    PubMed  CAS  Google Scholar 

  22. Hoffmann R (1999) The potential role of cytokines and T cells in alopecia areata. J Investig Dermatol Symp Proc 4(3):235–238

    Article  PubMed  CAS  Google Scholar 

  23. Gilhar A, Ullmann Y, Berkutzki T, Assy B, Kalish RS (1998) Autoimmune hair loss (alopecia areata)transferred by T lymphocytes to human scalp explants on SCID mice. J Clin Investig 101(1):62–67

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu T, Hizawa N, Honda A et al (2005) Promoter region polymorphism of macrophage migration inhibitory factor is string risk factor for young onset of extensive alopecia areata. Genes and Immunity 6(4):285–289

    Article  PubMed  CAS  Google Scholar 

  25. Messenger AG, Slater DN, Bleehen SS (1986) Alopecia areata: alterations in the hair growth cycle and correlation with the follicular pathology. Br J Dermatol 114:337–347

    Article  PubMed  CAS  Google Scholar 

  26. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CA, Amos CI, Gregersen PK, Christiano AM (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466(7302):113–117

    Article  PubMed  CAS  Google Scholar 

  27. Sundberg JP, Cordy WR, King LE Jr (1994) Alopecia areata in aging C3H/HeJ mice. J Invest Dermatol 102:847–856

    Article  PubMed  CAS  Google Scholar 

  28. Sun J, Silva KA, McElwee KJ, King LE Jr, Sundberg JP (2008) The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol 17:793–805

    Article  PubMed  CAS  Google Scholar 

  29. McElwee KJ, Boggess D, Olivry T et al (1998) Comparison of alopecia areata in human and nonhuman mammalian species. Pathobiology 66:90–107

    Article  PubMed  CAS  Google Scholar 

  30. McElwee KJ, Hoffmann R (2002) Alopecia areata - animal models. Clin Exp Dermatol 27:410–417

    Article  PubMed  CAS  Google Scholar 

  31. Wikramanayake TC, Alvarez-Connelly E, Simon J, Mauro LM, Guzman J, Elgart G, Schachner LA, Chen J, Plano LR, Jimenez JJ (2010) Heat treatment increases the incidence of alopecia areata in the C3H/HeJ mouse model. Cell Stress Chaperones 15(6):985–991

    Article  PubMed  CAS  Google Scholar 

  32. Leavitt M, Charles G, Heyman E, Michaels D (2009) HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig 29(5):283–292

    Article  PubMed  Google Scholar 

  33. Al-Mutairi N (2007) 308-nm excimer laser for the treatment of alopecia areata. Dermatol Surg 33(12):1483–1487

    PubMed  CAS  Google Scholar 

  34. Al-Mutairi N (2009) 308-nm excimer laser for the treatment of alopecia areata in children. Pediatr Dermatol 26(5):547–550

    Article  PubMed  Google Scholar 

  35. Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl) 9(5):621–626

    CAS  Google Scholar 

  36. Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235:374–380

    Article  PubMed  CAS  Google Scholar 

  37. Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  PubMed  CAS  Google Scholar 

  38. Liu X, Lyon R, Meier HT et al (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25:487–494

    Article  PubMed  Google Scholar 

  39. Yu W, Naim JO, Lanzafam RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 20:56–63

    Article  PubMed  CAS  Google Scholar 

  40. de Carvalho PT, Mazzer N, dos Reis FA et al (2006) Analysis of the influence of low-power He-Ne laser on the healing of skin wounds in diabetic and non-diabetic rats. Acta Cir Bras 21:177–183

    PubMed  Google Scholar 

  41. Pal G, Dutta A, Mitra K et al (2007) Effect of low-intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol 86:252–256

    Article  CAS  Google Scholar 

  42. Mirzaei M, Bayat M, Mosafa N et al (2007) Effect of low-level laser therapy on skin fibroblasts of streptozotocin-diabetic rats. Photomed Laser Surg 25:519–525

    Article  PubMed  Google Scholar 

  43. Moreno-Arias G, Castelo-Branco C, Ferrando J (2002) Paradoxical effect after IPL photoepilation. Dermatol Surg 28:1013–1016

    Article  PubMed  Google Scholar 

  44. Alajlan A, Shapiro J, Rivers JK et al (2005) Paradoxical hypertrichosis after laser epilation. J Am Acad Dermatol 53:85–88

    Article  PubMed  Google Scholar 

  45. Kontoes P, Vlachos S, Konstantinos M et al (2006) Hair induction after laser-assisted hair removal and its treatment. J Am Acad Dermatol 54:64–67

    Article  PubMed  Google Scholar 

  46. Desai S, Mahmoud BH, Bhatia AC, Hamzavi IH (2010) Paradoxical hypertrichosis after laser therapy: a review. Dermatol Surg 36(3):291–298, Epub 2010 Jan 19. Review

    Article  PubMed  CAS  Google Scholar 

  47. Bouzari N, Firooz AR (2006) Lasers may induce terminal hair growth. Dermatol Surg 32:460

    Article  PubMed  CAS  Google Scholar 

  48. Bukhari IA (2006) Pili bigemini and terminal hair growth induced by low-fluence alexandrite laser hair removal. J Cutan Med Surg 10:96–98

    PubMed  Google Scholar 

  49. Lolis MS, Marmur ES (2006) Paradoxical effects of hair removal systems: a review. J Cosmet Dermatol 5:274–246

    Article  PubMed  Google Scholar 

  50. Müller-Röver S, Handjiski B, van der Veen C, Eichmüller S, Foitzik K, McKay IA, Stenn KS, Paus R (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the generous support from Locks of Love to Dr. J.J.Jimenez. The HairMax LaserCombs were provided by Lexington International, LLC (Boca Raton, FL). Dr. T.C. Wikramanayake is supported by a Career Development Award (AR050487) from NIH/NIAMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin J. Jimenez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wikramanayake, T.C., Rodriguez, R., Choudhary, S. et al. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med Sci 27, 431–436 (2012). https://doi.org/10.1007/s10103-011-0953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0953-7

Keywords

Navigation