Skip to main content

Advertisement

Log in

Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Algal biofuels serve as a promising alternative energy source for liquid fuels. However, one of the bottlenecks in the conversion of microalgae to biofuels is the drying process. A moisture content of at most 10 % is desired for algal biomass prior to oil extraction to maximise biofuel yield. Conventional means of drying results to longer drying time and uneven drying of algal biomass. This study investigated the drying characteristics of microwave for microalgae (Chlorella vulgaris). Three microwave intensity levels (300, 600, and 900 W) were considered to dry 10, 20, and 30 of algal mass. Page model gave a better fit on the moisture ratio with time of microwave drying than the exponential model. Furthermore, the specific energy requirement was computed, and a relationship was found between moisture ratio with power and mass. Fourier transform infrared spectroscopy results showed significant reduction of infrared signal intensities of the functional groups present in the algae after drying at higher microwave power level. It was concluded that the 20 W/g microwave drying setting gave a lower specific energy requirement with good quality of remaining high lipid content qualitatively. Furthermore, it was recommended to use gas chromatography mass spectroscopy to further quantify the algal lipids and other functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avagyan AB (2008) A contribution to global sustainable development: inclusion of microalgae and their biomass in production and bio cycles. Clean Technol Environ Policy 10(4):313–317

    Article  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    Article  CAS  Google Scholar 

  • Becker EW, Venkataraman LV (1982) Biotechnology and exploitation of algae: the Indian approach. Deutsche Gesellschaft fur Technische Zusammenarbeit

  • Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy 154:1062–1071

    Article  CAS  Google Scholar 

  • Brau JF, Morandin M, Berntsson T (2013) Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ Policy 15(3):501–512

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies forproduction, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bulatov I, Klemeš JJ (2011) Clean fuel technologies and clean and reliable energy: a summary. Clean Technol Environ Policy 13(4):543–546

    Article  Google Scholar 

  • Chanrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52:243–261

    Article  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Cheng J, Yu T, Li T, Zhou J, Cen K (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour Technol 131:531–535

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Culaba AB, Tan RR, Biona JBM, Ubando AT, Lopez NSA, Tanchuco JQ, Garibay SS, Toledo NA, Jimenez CN, Pahila IG, Ami LS (2013) A mathematical model for the drying characteristics of microalgae (Tetraselmis sp.). Philippine Sci Lett 6(2)

  • Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A (2013) Drying characteristics of sardine fish dried with microwave heating. J Saudi Soc Agric Sci 12(2):121–127

    Google Scholar 

  • Datta AK, Davidson PM (2000) Microwave and radio frequency processing. J Food Sci 65:32–41

    Article  Google Scholar 

  • Dıaz GR, Martínez-Monzó J, Fito P, Chiralt A (2003) Modelling of dehydration–rehydration of orange slices in combined microwave/air drying. Innovat Food Sci Emerging Technol 4(2):203–209

    Article  Google Scholar 

  • Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J (2011) Experimental characterization and modellling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy 2011(36):2517–2527

    Article  Google Scholar 

  • Doymaz I (2004a) Convective air drying characteristics of thin layer carrots. J Food Eng 61:359–364

    Article  Google Scholar 

  • Doymaz I (2004b) Pretreatment effect on sun drying of mulberry fruits (Morus alba L.). J Food Eng 65:205–209

    Article  Google Scholar 

  • Doymaz İ (2005) Drying characteristics and kinetics of okra. J Food Eng 69(3):275–279

  • Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79(3):331–337

    Article  CAS  Google Scholar 

  • Ducut MRD, Villagracia ARC, Corpuz J, Arboleda NB Jr., David MY, Manrique RB, Ubando AT, Culaba AB (2014) Molecular dynamics study on the effects of varying temperature and pressure on phosphatidycholine lipids for microalgae drying. In Humanoid Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2014 International Conference pp 1–4. IEEE, 2014

  • El-Sebaii AA, Aboul-Enein S, Ramadan MRI, El-Gohary HG (2002) Empirical correlations for drying kinetics of some fruits and vegetables. Energy 27(9):845–859

  • Ertekin C, Yaldiz O (2004) Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng 63:349–359

    Article  Google Scholar 

  • Feng H, Tang J (1998) Microwave finish drying of diced apple slices in a spouted bed. J Food Sci 63(4):679–683

    Article  CAS  Google Scholar 

  • Glaser JA (2009) Carbon dioxide recycling. Clean Technol Environ Policy 11(3):253–257

    Article  CAS  Google Scholar 

  • Gogus F, Maskan M (1999) Water adsorption and drying characteristics of okra (Hibiscus esculentus L.). Drying Technol 17:883–894

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  Google Scholar 

  • Grima EM, Medina AR, Giménez AG, Pérez JS, Camacho FG, Sánchez JG (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71(9):955–959

    Article  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7):491–515

    Article  Google Scholar 

  • Gupta O, Ahmed K, Shivhare US, Raghavan GSV (2002) Drying characteristics of red chilli. Drying Technol 20:1975–1987

    Article  Google Scholar 

  • Henderson SM, Pabis S (1961) Grain drying theory I. Temperature effect on drying coefficient. J Agric Eng Res 6(3):169–174

  • Ho Shih-Hsin et al (2014) Perspective on engineering strategies for improving biofuel production from micoalgae. Biotechnol Adv 32:1448–1459

    Article  CAS  Google Scholar 

  • Iqbal J (2012) Development of cost-effective and benign lipid extraction system for microalgae (Doctoral dissertation, Louisiana State University)

  • Koller M et al (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6(2014):52–63

    Article  Google Scholar 

  • Koua KB, Fassinou WF, Gbaha P, Toure S (2009) Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy 34(10):1594–1602

  • Lahsasni S, Kouhila M, Mahrouz M, Idlimam A, Jamali A (2004) Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica). Energy 29(2):211–224

  • Lapinskiene A, Martinkus P, Rebzdaite V (2006) Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ Pollut 142:432–437

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  CAS  Google Scholar 

  • Lule F, Koyuncu T (2015) Convective and microwave drying characteristics of sorbus fruits (Sorbus domestica L.). Proc Soc Behav Sci 195:2634–2643

    Article  Google Scholar 

  • Manrique R, Villagracia ARC, Ubando AT, Corpuz J, Padama AA, David MY, Arboleda NB Jr, Culaba AB, Kasai H (2014) A molecular dynamics investigation of water migration in a lipid bilayer for microalgae drying. Philipp Sci Let 7(01):138–145

  • Maskan M (2000) Microwave/air and microwave finish drying of banana. J Food Eng 44(2):71–78

    Article  Google Scholar 

  • Maskan M (2001) Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng 48(2):169–175

    Article  Google Scholar 

  • Midilli A, Kucuk H (2003) Energy and exergy analyses of solar drying process of pistachio. Energy 28(6):539–556

    Article  Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78(10):1213–1215

    Article  CAS  Google Scholar 

  • Nikolić S, Mojović L, Rakin M, Pejin D, Pejin J (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13(4):587–594

    Article  Google Scholar 

  • O’Connell D, Savelski M, Slater CS (2013) Life cycle assessment of dewatering routes for algae derived biodiesel processes. Clean Technol Environ Policy 15(4):567–577

    Article  Google Scholar 

  • Özbek B, Dadali G (2007) Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng 83(4):541–549

    Article  Google Scholar 

  • Özdemir M, Devres YO (1999) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42(4):225–233

    Article  Google Scholar 

  • Park KJ, Vohnikova Z, Brod FPR (2002) Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J Food Eng 51:193–199

    Article  Google Scholar 

  • Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V (2010) Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technol Environ Policy 12(3):239–254

    Article  CAS  Google Scholar 

  • Ponnuswamy I (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. Int J Bio-Science Bio Technol 5(2):17–26

    Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Solar Energy 18(4):303–311

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Sarimeseli A (2011) Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers Manag 52(2):1449–1453

    Article  Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lee TM, Chang JS (2015) Microalgal drying and cell disruption—recent advances. Bioresour Technol 184:258–266

    Article  CAS  Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  CAS  Google Scholar 

  • Soeder CJ, Pabst W (1975) Production, properties, preclinical and clinical testing of Scenedesmus 276-3a. The PAG Compendium, C-2, 2113. World Mark Press Ltd, New York

    Google Scholar 

  • Soysal Y (2004) Microwave drying characteristics of parsley. Biosyst Eng 89(2):167–173

    Article  Google Scholar 

  • Soysal Y, Öztekin S, Eren Ö (2006) Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosyst Eng 93(4):403–413

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35(2):171

    CAS  Google Scholar 

  • Teo CL, Jamaluddin H, Zain NAM, Idris A (2014) Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp. Renew Energy 68:1–5

    Article  CAS  Google Scholar 

  • Toğrul İT, Pehlivan D (2002) Mathematical modelling of solar drying of apricots in thin layers. J Food Eng 55(3):209–216

  • Usub T, Lertsatitthankorn C, Poomsa-Ad N, Wiset L, Siriamornpun S, Soponronnarit S (2010) Thin layer solar drying characteristics of silkworm pupae. Food Bioprod Process 88(2):149–160

  • Varith J, Dijkanarukkul P, Achariyaviriya A, Achariyaviriya S (2007) Combined microwave-hot air drying of peeled longan. J Food Eng 81(2):459–468

    Article  Google Scholar 

  • Viswanathan T, Mani S, Das KC, Chinnasamy S, Bhatnagar A, Singh RK, Singh M (2012) Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae. Bioresour Technol 126:131–136

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWW, Withag JA, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102(8):5113–5122

    Article  CAS  Google Scholar 

  • Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26(5):457–465

    Article  Google Scholar 

  • Yanfen L, Zehao H, Xiaoqian M (2012) Energy analysis and environmental impacts of Microalgal biofuel in China. Energy Policy 45:142–151

    Article  Google Scholar 

  • Zhu Liandong (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sustain Energy Rev 41:1376–1384

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the CHED-PHERNet Sustainability Studies Program of the Commission for Higher Education (CHED), Philippines. The authors are also grateful for the assistance of De La Salle University Mechanical Engineering Department and University of the Philippines Los Baños, Laguna. Parts of this work were carried out in the National Institute of Physics, University of the Philippines, Diliman, the Chemistry Department and the Physics Department of De La Salle University, and the School of Material Science Engineering of Universiti Malaysia Perlis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Rey C. Villagracia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villagracia, A.R.C., Mayol, A.P., Ubando, A.T. et al. Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production. Clean Techn Environ Policy 18, 2441–2451 (2016). https://doi.org/10.1007/s10098-016-1169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1169-0

Keywords

Navigation