Skip to main content
Log in

Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this study, phosphate and chemical oxygen demand removals of medical waste sterilization plant wastewater were investigated and the Taguchi experimental method was used to determine optimum treatment conditions. In the scope of the study, four important factors influencing the phosphate and chemical oxygen demand removal namely initial pH, current density, initial wastewater concentration, and contact time were optimized. Results show that about 52 % of chemical oxygen demand removal has been obtained at optimum conditions. Also, phosphorus has been completely removed at optimum levels. In addition, analysis of variance shows that the biggest contribution ratio belongs to initial wastewater concentration on the electrocoagulation process efficiency. The contribution percentages of each factor in descending order are as follows: initial wastewater concentration (42.51 %) > pH (32.02 %) > current density (14.56 %) > contact time (6.64 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber S, Salari D, Parsa MR (2010) Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chem Eng J 162:127–134. doi:10.1016/j.cej.2010.05.012

    Article  CAS  Google Scholar 

  • Abu Qdais H, Rabi A, Abdulla F (2007) Characteristics of the medical waste generated at the Jordanian hospitals. Clean Technol Environ Policy 9:147–152. doi:10.1007/s10098-006-0077-0

    Article  CAS  Google Scholar 

  • Akyol A (2012) Treatment of paint manufacturing wastewater by electrocoagulation. Desalination 285:91–99. doi:10.1016/j.desal.2011.09.039

    Article  CAS  Google Scholar 

  • Aoudj S, Khelifa A, Drouiche N, Hecini M, Hamitouche H (2010) Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem Eng Process 49:1176–1182. doi:10.1016/j.cep.2010.08.019

    Article  CAS  Google Scholar 

  • Apha A (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Attour A, Touati M, Tlili M, Ben Amor M, Lapicque F, Leclerc JP (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep Purif Technol 123:124–129. doi:10.1016/j.seppur.2013.12.030

    Article  CAS  Google Scholar 

  • Barrado E, Vega M, Pardo R, Grande P, Del Valle JL (1996) Optimisation of a purification method for metal-containing wastewater by use of a Taguchi experimental design. Water Res 30:2309–2314. doi:10.1016/0043-1354(96)00119-4

    Article  CAS  Google Scholar 

  • Bayramoglu M, Kobya M, Can OT, Sozbir M (2004) Operating cost analysis of electrocoagulation of textile dye wastewater. Sep Purif Technol 37:117–125. doi:10.1016/j.seppur.2003.09.002

    Article  CAS  Google Scholar 

  • Daneshvar N, Ashassi-Sorkhabi H, Tizpar A (2003) Decolorization of Orange II by electrocoagulation method. Sep Purif Technol 31:153–162. doi:10.1016/S1383-5866(02)00178-8

    Article  CAS  Google Scholar 

  • Daneshvar N, Khataee A, Amani Ghadim A, Rasoulifard M (2007) Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). J Hazard Mater 148:566–572

    Article  CAS  Google Scholar 

  • Diaz LF, Savage GM, Eggerth LL (2005) Alternatives for the treatment and disposal of healthcare wastes in developing countries. Waste Manag 25:626–637. doi:10.1016/j.wasman.2005.01.005

    Article  CAS  Google Scholar 

  • Dimoglo A, Akbulut HY, Cihan F, Karpuzcu M (2004) Petrochemical wastewater treatment by means of clean electrochemical technologies. Clean Technol Environ Policy 6:288–295. doi:10.1007/s10098-004-0248-9

    Article  CAS  Google Scholar 

  • El-Haggar DSM (2007) Chapter 9—sustainability of clinical solid waste management. In: El-Haggar DSM (ed) Sustainable industrial design and waste management. Academic Press, Oxford, pp 293–306. doi:10.1016/B978-012373623-9/50011-3

  • Gökkuş Ö, Yıldız YŞ, Yavuz B (2012) Optimization of chemical coagulation of real textile wastewater using Taguchi experimental design method. Desalin Water Treat 49:263–271

    Article  Google Scholar 

  • Gönder ZB, Kaya Y, Vergili I, Barlas H (2010) Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach. Sep Purif Technol 70:265–273. doi:10.1016/j.seppur.2009.10.001

    Article  Google Scholar 

  • Gunes S, Manay E, Senyigit E, Ozceyhan V (2011) A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts. Appl Therm Eng 31:2568–2577. doi:10.1016/j.applthermaleng.2011.04.022

    Article  Google Scholar 

  • Gürses A, Yalçın M, Doğar Ç (2002) Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables. Waste Manag 22(2002):491–499

    Article  Google Scholar 

  • Holt PK (2006) Electrocoagulation: unravelling and synthesising the mechanisms behind a water treatment process PhD dissertation, University of Sydney, Australia

  • Hu Z, Chandran K, Smets BF, Grasso D (2002) Evaluation of a rapid physical–chemical method for the determination of extant soluble COD. Water Res 36:617–624

    Article  CAS  Google Scholar 

  • Insa E, Zamorano M, López R (2010) Critical review of medical waste legislation in Spain resources. Conserv Recycl 54:1048–1059. doi:10.1016/j.resconrec.2010.06.005

    Article  Google Scholar 

  • İrdemez Ş, Demircioğlu N, Yıldız YŞ, Bingül Z (2006) The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes. Sep Purif Technol 52:218–223. doi:10.1016/j.seppur.2006.04.008

    Article  Google Scholar 

  • Jadhav SB, Chougule AS, Shah DP, Pereira CS, Jadhav JP (2014) Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technol Environ Policy 2014:1–12. doi:10.1007/s10098-014-0827-3

    Google Scholar 

  • Jang Y-C, Lee C, Yoon O-S, Kim H (2006) Medical waste management in Korea. J Environ Manag 80:107–115. doi:10.1016/j.jenvman.2005.08.018

    Article  Google Scholar 

  • Jangsawang W, Fungtammasan B, Kerdsuwan S (2005) Effects of operating parameters on the combustion of medical waste in a controlled air incinerator. Energy Convers Manag 46:3137–3149. doi:10.1016/j.enconman.2005.03.017

    Article  CAS  Google Scholar 

  • Kajitvichyanukul P, Suntronvipart N (2006) Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method. J Hazard Mater 138:384–391. doi:10.1016/j.jhazmat.2006.05.064

    Article  CAS  Google Scholar 

  • KASKI (2013) The Directorate of Kayseri metropolitan municipality water and sewerage the regulation of wastewater discharge in sewage system Kayseri in Turkey

  • Madaeni SS, Koocheki S (2006) Application of Taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element. Chem Eng J 119:37–44. doi:10.1016/j.cej.2006.03.002

    Article  CAS  Google Scholar 

  • McKeen L (2012) Introduction to Food Irradiation and Medical Sterilization. In: McKeen L (ed) The Effect of Sterilization on Plastics and Elastomers, 3rd edn. William Andrew Publishing, Boston, pp 1–40. doi:10.1016/B978-1-4557-2598-4.00001-0

  • Mehrara H, Roozbehani B, Shishehsaz MR, Mirdrikvand M, Moqadam SI (2014) Using Taguchi method to determine optimum process conditions for flue gas desulfurization through an amine scrubber. Clean Technol Environ Policy 16:59–67. doi:10.1007/s10098-013-0593-7

    Article  CAS  Google Scholar 

  • Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais J-F (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581–590. doi:10.1016/j.jhazmat.2006.02.050

    Article  CAS  Google Scholar 

  • Millar GJ, Lin J, Arshad A, Couperthwaite SJ (2014) Evaluation of electrocoagulation for the pre-treatment of coal seam water. J Water Process Eng 4:166–178. doi:10.1016/j.jwpe.2014.10.002

    Article  Google Scholar 

  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114:199–210. doi:10.1016/j.jhazmat.2004.08.009

    Article  CAS  Google Scholar 

  • Moreno HA, Cocke DL, Gomes JJA (2006) Electrocoagulation: COD Removal Mechanism. In: AIChE 2006, San Francisco, CA

  • Mouedhen G, Feki M, Wery MDP, Ayedi HF (2008) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mater 150:124–135. doi:10.1016/j.jhazmat.2007.04.090

    Article  CAS  Google Scholar 

  • Özkan O, Mıhçıokur H, Azgın ST, Özdemir Ö (2010) Characterisation of medical-waste sterilisation-plant wastewater and a preliminary study of coagulation–flocculation treatment options. Water Sci Technol 62:266–271. doi:10.2166/wst.2010.282

    Article  Google Scholar 

  • Palahouane B, Drouiche N, Aoudj S, Bensadok K (2014) Cost-effective electrocoagulation process for the remediation of fluoride from pretreated photovoltaic wastewater. J Ind Eng Chem. doi:10.1016/j.jiec.2014.06.033

    Google Scholar 

  • Phalakornkule C, Sukkasem P, Mutchimsattha C (2010) Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater. Int J Hydrog Energy 35:10934–10943. doi:10.1016/j.ijhydene.2010.06.100

    Article  CAS  Google Scholar 

  • Rutala WA, Weber DJ (1999) Infection control: the role of disinfection and sterilization. J Hosp Infect 43(Supplement 1):S43–S55. doi:10.1016/S0195-6701(99)90065-8

    Article  Google Scholar 

  • Song L-J, Zhu N-W, Yuan H-P, Hong Y, Ding J (2010) Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment. Water Res 44:4371–4378. doi:10.1016/j.watres.2010.05.052

    Article  CAS  Google Scholar 

  • Tchamango S, Nanseu-Njiki CP, Ngameni E, Hadjiev D, Darchen A (2010) Treatment of dairy effluents by electrocoagulation using aluminium electrodes. Sci Total Environ 408:947–952. doi:10.1016/j.scitotenv.2009.10.026

    Article  CAS  Google Scholar 

  • Vepsäläinen M, Kivisaari H, Pulliainen M, Oikari A, Sillanpää M (2011) Removal of toxic pollutants from pulp mill effluents by electrocoagulation. Sep Purif Technol 81:141–150

    Article  Google Scholar 

  • Yildiz YŞ, Şenyiğit E, İrdemez Ş (2013) Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method. Neural Comput Appl 23:1061–1069. doi:10.1007/s00521-012-1031-1

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the FBD-12-4107 doctoral thesis project of the Research Fund of Erciyes University and performed in the laboratories of the Environmental Engineering Department, Engineering Faculty, Erciyes University. Also, special thanks go to Mr. Erkan Ozdogan, for his assistance with proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömür Gökkuş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökkuş, Ö., Yıldız, Y.Ş. Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions. Clean Techn Environ Policy 17, 1717–1725 (2015). https://doi.org/10.1007/s10098-014-0897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0897-2

Keywords

Navigation