Skip to main content

Advertisement

Log in

Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A multi-functional bioenergy system is an efficient way for producing multiple energy products from biomass, which results in near-zero carbon emissions. To achieve net negative carbon emissions, biochar production as carbon sequestration can be integrated in the system. A fuzzy mixed-integer linear programming model is developed to simultaneously design and optimize a multi-functional bioenergy system given multiple product demands, carbon footprint, and economic performance constraints. Case studies are presented involving multi-functional bioenergy systems with biochar production for carbon sequestration. The results show that net negative carbon footprint can be achieved in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Technology matrix

COPVAC :

Coefficient of performance of the vapor-absorption chiller

COPVCC :

Coefficient of performance of the vapor-compression chiller

b :

Binary process selection vector

c :

Carbon footprint coefficient

g :

Process selection vector

m :

Products in the process matrix

M :

Arbitrary large scalar number

N :

Number of elements in a vector

n :

Processes in the process matrix

P L :

Lower economic performance limit

P U :

Upper economic performance limit

Q :

Process topology matrix

r :

Price per unit product

T:

Transposition operator

y a :

Lower threshold limit of the support for the product output vector

y b :

Lower threshold limit of the core for the product output vector

y c :

Upper threshold limit of the core for the product output vector

y d :

Upper threshold limit of the support for the output vector

z L :

Lower threshold limit of carbon footprint

z U :

Upper threshold limit of carbon footprint

μ :

Fuzzy membership function of an objective

η GTp :

Power efficiency of the gas turbine

η HRSGh :

Heat efficiency of the heat recovery steam generator of the gas turbine

η Bh :

Efficiency of the boiler

P :

Economic performance

x :

Process capacity scaling vector

y :

Net product output vector

z :

Carbon footprint

λ :

Degree of satisfaction for the fuzzy membership function

References

  • Alibaba (2013) Competitive price of glycerol 99.5 %. www.alibaba.com/product-gs/613886558/Competitive_price_of_glycerol_99_5_.html?s=p. Accessed 6 Apr 2013

  • Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, Michel K, den Elzen KMGJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Change 100:195–202

    Article  CAS  Google Scholar 

  • Bala G (2013) Digesting 400 ppm for global mean CO2 concentration. Curr Sci 104(11):1471–1472

    Google Scholar 

  • Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manage Sci 17(4):B141–B164

    Article  Google Scholar 

  • Berndes G, Borjesson P, Ostwald M, Palm M (2008) Multifunctional biomass production systems: an overview with presentation of specific applications in India and Sweden. Biofuels Bioprod Biorefin 2:16–25

    Article  CAS  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemical by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Bridgwater T (2005) Fast pyrolysis based biorefineries. Chemistry 4:15–37

    Google Scholar 

  • Bridgwater A (2007) International Energy Agency (IEA) Bioenergy update 27: biomass pyrolysis. Biomass Bioenergy 31:I–V

    Google Scholar 

  • Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521

    Article  Google Scholar 

  • Carvalho M, Serra LM, Lozano MA (2011) Geographic evaluation of trigeneration systems in the tertiary sector: effect of climatic and electricity supply conditions. Energy 36(4):1931–1939

    Article  Google Scholar 

  • Carvalho M, Lozano MA, Serra LM (2012a) Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. Appl Energy 91(1):245–254

    Article  Google Scholar 

  • Carvalho M, Lozano MA, Serra LM, Wohlgemuth V (2012b) Modeling simple trigeneration systems for the distribution of environmental loads. Environ Model Softw 30:71–80

    Article  Google Scholar 

  • Center for Agricultural and Rural Development (CARD) (2013) Projected biodiesel operating margins. www.card.iastate.edu/research/bio/tools/proj_bio_gm.aspx. Accessed 6 Apr 2013

  • Chang MS (2014) A scenario-based mixed integer linear programming model for composite power system expansion planning with greenhouse gas emission controls. Clean Technol Environ Policy. doi:10.1007/s10098-013-0699-y

    Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51:1412–1421

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Douglas JM (1985) A hierarchical decision procedure for process synthesis. American Institute of Chemical Engineers Journal 31(3):353–362

    Article  CAS  Google Scholar 

  • Galinato SP, Yoder JK, Granatstein D (2011) The economic value of biochar in crop production and carbon sequestration. Energy Policy 39(10):6344–6350

    Article  Google Scholar 

  • Guar S, Reed TB (1995) An atlas of thermal data for biomass and other fuels. National Renewable Energy Laboratory, Golden, CO

    Book  Google Scholar 

  • Guizani C, Sanz JE, Salvador S (2013) Effects of CO2 on biomass fast pyrolysis: reaction rate, gas yields and char reactive properties. Fuel 116:310–320

    Article  Google Scholar 

  • Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106(4):679–690

    Article  CAS  Google Scholar 

  • Ibarrola R, Shackley S, Hammond J (2012) Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Manage 32(5):859–868

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion: highlights. International Energy Agency. www.iea.org/co2highlights/co2highlights.pdf. Accessed 3 Feb 2013

  • Kasivisvanathan H, Ng RTL, Tay DHS, Ng DKS (2012) Fuzzy optimisation for retrofitting a palm oil mill into a sustainable palm oil-based integrated biorefinery. Chem Eng J 200–202:694–709

    Article  Google Scholar 

  • Kasivisvanathan H, Barilea IDU, Ng DKS, Tan RR (2013) Optimal operational adjustment in multi-functional energy systems in response to process inoperability. Appl Energy 102:492–500

    Article  Google Scholar 

  • Kasivisvanathan H, Ubando AT, Tan RR, Ng DKS (2014) Robust optimisation for process synthesis and design with uncertainties. Ind Eng Chem Res. doi:10.1021/ie401824j

    Google Scholar 

  • Khoo HH, Koh CY, Shaik MS, Sharratt PN (2013) Bioenergy co-products derived from microalgae biomass via thermochemical conversion: life cycle energy balances and CO2 emissions. Bioresour Technol 143:298–307

    Article  CAS  Google Scholar 

  • Kung CC, McCarl BA, Cao X (2013) Economics of pyrolysis-based energy production and biochar utilization: a case study in Taiwan. Energy Policy 60:317–323

    Article  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562

    Article  CAS  Google Scholar 

  • Lee Y, Eum PRB, Ryu C, Park YK, Jung JH, Hyun S (2013) Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour Technol 130:345–350

    Article  CAS  Google Scholar 

  • Liu P, Gerogiorgis DI, Pistikopoulos EN (2007) Modeling and optimization of polygeneration energy systems. Catal Today 127(1–4):347–359

    Article  CAS  Google Scholar 

  • Liu P, Pistikopoulos EN, Li Z (2009) A mixed-integer optimization approach for polygeneration energy systems design. Comput Chem Eng 33(3):759–768

    Article  CAS  Google Scholar 

  • Lozano MA, Carvalho M, Serra LM (2009a) Operational strategy and marginal costs in simple trigeneration systems. Energy 34(11):2001–2008

    Article  Google Scholar 

  • Lozano MA, Ramos JC, Carvalho M, Serra LM (2009b) Structure optimization of energy supply systems in tertiary sector buildings. Energy Build 41(10):1063–1075

    Article  Google Scholar 

  • Lozano MA, Ramos JC, Serra LM (2010) Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints. Energy 35(2):794–805

    Article  Google Scholar 

  • McGlashan N, Shah N, Caldecott B, Workman M (2012) High-level techno-economic assessment of negative emissions technologies. Process Saf Environ Prot 90:501–510

    Article  CAS  Google Scholar 

  • Methanex (2013) Methanol price. www.eia.gov/forecasts/steo/. Accessed 6 Apr 2013

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Article  CAS  Google Scholar 

  • Ng DKS (2010) Automated targeting for the synthesis of an integrated biorefinery. Chem Eng J 162(1):67–74

    Article  CAS  Google Scholar 

  • Ng KS, Zhang N, Sadhukhan J (2012) Decarbonised coal energy system advancement through CO2 utilisation and polygeneration. Clean Technol Environ Policy 14:443–451

    Article  CAS  Google Scholar 

  • Pratt K, Moran D (2010) Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 34:1149–1158

    Article  CAS  Google Scholar 

  • Reed TB, Cowdery CD (1987) Heat flux requirement for fast pyrolysis and a new method for generating biomass vapor. Am Chem Soc Spring Symp 32:68–81

    CAS  Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Rubio-Maya C, Uche-Marcuello J, Martínez-Gracia A, Bayod-Rújula A (2011) Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources. Appl Energy 88(2):449–457

    Article  Google Scholar 

  • Shabbir Z, Tay DHS, Ng DKS (2012) A hybrid optimisation model for the synthesis of sustainable gasification-based integrated biorefinery. Chem Eng Res Des 90(10):1568–1581

    Article  CAS  Google Scholar 

  • Tan RR, Culaba AB, Aviso KB (2008) A fuzzy linear programming extension of the general matrix-based life cycle model. J Clean Prod 16:1358–1367

    Article  Google Scholar 

  • Tan RR, Ballacillo JB, Aviso KB, Culaba AB (2009) A fuzzy multiple-objective approach to the optimization of bioenergy system footprints. Chem Eng Res Des 87:1162–1170

    Article  CAS  Google Scholar 

  • Tan RR, Lam HL, Kasivisvanathan H, Ng DKS, Foo DCY, Kamal M, Hallaler N, Klemes JJ (2012) An algebraic approach to identifying bottlenecks in linear process models of multifunctional energy systems. Theor Found Chem Eng 46(6):642–650

    Article  CAS  Google Scholar 

  • Tang MC, Chin MWS, Lim KM, Mun YS, Ng RTL, Tay DHS, Ng DKS (2013) Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol Environ Policy 15:783–799

    Article  CAS  Google Scholar 

  • Tay DHS, Ng DKS (2012) Multiple-cascade automated targeting for synthesis of a gasification-based integrated biorefinery. J Clean Prod 34:38–48

    Article  CAS  Google Scholar 

  • Tay DHS, Kheireddine H, Ng DKS, El-Halwagi MM (2011) Synthesis of an integrated biorefinery via the C–H–O ternary diagram. Clean Technol Environ Policy 13(4):567–579

    Article  CAS  Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36:4406–4409

    Article  Google Scholar 

  • Ubando AT, Culaba AB, Aviso KB, Tan RR (2013) Simultaneous carbon footprint allocation and design of trigeneration plants using fuzzy fractional programming. Clean Technol Environ Policy 15(5):823–832

    Article  CAS  Google Scholar 

  • United States Energy Information Administration (USEIA) (2013) Short-term energy and summer fuels outlook. www.eia.gov/forecasts/steo/. Accessed 6 Apr 2013

  • Yoder J, Galinato S, Granatstein D, Garcia-Pérez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(5):1851–1862

    Article  CAS  Google Scholar 

  • Zajec L (2009) Slow pyrolysis in a rotary kiln reactor: optimization and experiment. Master’s thesis at the School Renewable Energy Science, University of Iceland and University of Akureyi, Akureyri, Iceland. www.skemman.is/stream/get/1946/7005/17751/1/Luka_Zajec.pdf. Accessed 7 June 2013

  • Zimmermann HJ (1978) Fuzzy programming and Linear programming with several objective functions. Fuzzy Sets Syst 1:45–55

    Article  Google Scholar 

  • Zimmermann HJ (2001) Fuzzy set theory: and its applications. Kluwer Academic Publishers, Norwell, MA

    Google Scholar 

  • Zondervan E, Nawaz M, De Haan AB, Woodley JM, Gani R (2011) Optimal design of a multi-product biorefinery system. Comput Chem Eng 35(9):1752–1766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The partial financial support of Philippine Commission on Higher Education (CHED) through the PHERNet program and the Faculty Development Program of De La Salle University for the Ph.D. studies of the first author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond R. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubando, A.T., Culaba, A.B., Aviso, K.B. et al. Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions. Clean Techn Environ Policy 16, 1537–1549 (2014). https://doi.org/10.1007/s10098-014-0721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0721-z

Keywords

Navigation