Skip to main content
Log in

New procedure for optimal design of cogeneration system with considering environmental impacts and total cost

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this paper, a new procedure is introduced for optimal design of utility system in process industries. This method is based on the development of the R-curve concept and cogeneration targeting through estimating costs, environmental impacts, and exergoeconomic analysis. This new method can be applied for the synthesis of site utility system in process industries with considering total cost, environmental impacts, and exeregoeconomic analysis. In this regard, the powerful and accurate cogeneration targeting method is provided. The procedure which is proposed here provided a consistent, general procedure for determining mass flowrates and efficiencies of the applied turbines. Also, the new graphical representations are proposed. These curves can be easily constructed and simply understood. In addition, the optimal design of site utility is carried out in two case studies, in which the usefulness of this method is clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( \Phi_{k} \) :

Maintenance factor (–)

\( \eta_{\text{cogen}} \) :

Cogeneration efficiency (%)

\( c_{{{\text{p}}.{\text{import}}}} \) :

Price of importing power ($/kWh)

\( c_{\text{f}} \) :

Price of fuel ($/kWh)

\( c_{p} \) :

Specific heat of saturated water (MWh/tC)

\( C_{\text{D}} \) :

Cost rates of exergy destruction ($/h)

\( C_{\text{F}} \) :

Fuel cost ($/h)

\( C_{{{\text{F}},k}} \) :

Cost rates of fuel in the kth component ($/MW)

\( C_{\text{GT}} \) :

Capital investment for gas turbine system (MM$)

\( C_{\text{i}} \) :

Initial investment cost (MM$)

\( C_{\text{P}} \) :

Product cost ($/h)

\( C_{{{\text{P}},k}} \) :

Cost rates of product in the kth component ($/MW)

\( C_{\text{ST}} \) :

Capital investment for steam turbine system (MM$)

CFP:

Carbon footprint (m2)

\( {\text{CRF}}_{{\left( {i,n} \right)}} \) :

Capital recovery factor (–)

\( {\text{ED}} \) :

Exergy destruction (MW)

EF:

Equivalence factor for forests (–)

EMFP:

Emission footprint (m2)

EFP:

Energy footprint (m2)

\( F_{{{\text{CO}}_{2} }} \) :

Fraction of CO2 absorbed by the oceans (kgCO2 m−2 y−1)

H :

Specific enthalpy (kJ/kg)

\( \overline{\Updelta H}_{\text{is}} \) :

Isentropic enthalpy change between the steam turbine inlet and outlet (MWh/t)

\( M_{{{\text{CO}}_{2} }} \) :

Product specific emission of CO2 (kgCO2)

\( m_{{{\text{exhaust}}.{\text{GT}}}} \) :

Flow rate of gas turbine exhaust (kg/s)

\( m_{\hbox{max} } \) :

Maximum steam flow rate of steam turbine (t/h)

\( \dot{m}_{i}^{\text{DEM}} \) :

Mass flow of process steam demand (t/h)

\( \dot{m}_{i}^{\text{GEM}} \) :

Mass flow of process steam generation (t/h)

N :

Slope of the Willan’s line for steam turbine (MWh/t)

P :

Pressure (bar)

\( {\text{PW}} \) :

Present worth (MM$)

\( {\text{PWF}}_{{\left( {i,n} \right)}} \) :

Present worth factor (–)

s :

Specific entropy (kJ/kg K)

\( S_{n} \) :

Salvage value (MM$)

\( S_{{{\text{CO}}_{2} }} \) :

Sequestration rate of CO2 by biomass (kgCO2 m−2 y−1)

\( T_{{{\text{exhaust}}.{\text{GT}}}} \) :

Exhaust temperature of gas turbine (°C)

\( T_{{{\text{s}},{\text{ave}}}} \) :

Average saturation temperature between the turbine inlet and outlet (°C)

\( T_{{{\text{s}},{\text{in}}}} \) :

Saturation temperature of steam turbine inlet (°C)

\( T_{{{\text{s}},{\text{out}}}} \) :

Saturation temperature of steam turbine outlet (°C)

\( \Updelta T_{\text{s}} \) :

Saturation temperature difference between the inlet and outlet (°C)

TAC:

Total annualized cost (MM$)

\( q_{\text{in}} \) :

Heat content in the inlet (MWh/t)

\( q_{\text{out}} \) :

Heat content in the outlet (MWh/t)

\( Q_{\text{fuel}} \) :

Fuel consumption (MW)

\( Q_{{{\text{fuel}}.{\text{GT}}}} \) :

Fuel consumption of gas turbine (MW)

\( Q_{\text{heat}} \) :

Heat demand of steam (MW)

\( Q_{{{\text{heat}}.{\text{HRSG}}}} \) :

Heat content in the steam generated from HRSG (MW)

W :

Power demand (MW)

\( W_{{{\text{GT}}.\hbox{max} }} \) :

Maximum power generation of gas turbine (MW)

\( W_{\text{import}} \) :

Importing power (MW)

\( W_{\text{loss}} \) :

Internal loss of steam turbine (MW)

WFP:

Water footprint (t)

\( \dot{Y} \) :

Environmental impact rate (Pts/h)

\( \dot{Z}_{k} \) :

Capital cost rate of unit k ($/h)

\( Z^{\text{CI}} \) :

Cost rates associated with capital investment ($/h)

\( Z^{\text{OM}} \) :

Cost rates associated with operating and maintenance ($/h)

References

  • Akbostanci E, Turut-Asik S, Tunc GI (2009) The relationship between income and environment in Turkey: is there an environmental Kuznets curve. Energy Policy 37:861–867

    Article  Google Scholar 

  • Al-Azri NA (2008) Integrated approaches to the optimization of process-utility systems. Ph.D. Thesis, Texas A&M University

  • Apergis N, Payne JE (2009) CO2 emissions, energy usage, and output in Central America. Energy Policy 37:3282–3286

    Article  Google Scholar 

  • Asante NDK, Zhu XX (1996) A new algorithm for automated retrofit of heat exchanger networks. In: IChemE Research Event, Second European Conference

  • Atkins MJ, Morrison AS, Walmsley MRW (2010) Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl Energy 87:982–987

    Article  Google Scholar 

  • Bandyopadhyay S, Foo DCY, Tan RR (2009) Segregated targeting for multiple resources using decomposition principle. AIChE J 56(5):1235–1248

    Google Scholar 

  • Bandyopadhyay S, Varghese J, Bansal V (2010) Targeting for cogeneration potential through total site integration. Appl Therm Eng 30:6–14

    Article  Google Scholar 

  • Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. Wiley, New York

    Google Scholar 

  • Belloumi M (2009) Energy consumption and GDP in Tunisia: Cointegration and causality analysis. Energy Policy 37:2745–2753

    Google Scholar 

  • Benedetto LD, Klemes J (2000) The Environmental Performance Strategy Map: an integrated LCA approach to support the strategic decision-making process. J Clean Prod 17:900–906

    Article  Google Scholar 

  • Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G (2010) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy Int J. doi:10.1016/j.energy.2010.05.020

    Google Scholar 

  • Chao Z, Yan W (2006) Exergy cost analysis of a coal fired power plant based on structural theory of thermoeconomics. Energy Convers Manag 47:817–843

    Article  Google Scholar 

  • Chou CC, Shih YS (1987) A thermodynamic approach to the design and Synthesis of plant utility systems. IndEngChem Res 26:1100–1108

    CAS  Google Scholar 

  • Colmenares TR, Seider WD (1989) Synthesis of utility systems integrated with chemical processes. IndEngChem Res 28:84–93

    CAS  Google Scholar 

  • Compilation of air pollutant emission factors (1998) In: Stationary point and area sources, 5th edn, vol 1. US Environmental Protection Agency, Office of Air Quality Planning and Standards; AP-42, Research Triangle Park, North Carolina

  • Coondoo D, Dinda S (2008) The carbon dioxide emission and income: a temporal analysis of cross-country distributional patterns. Ecol Econ 65:375e85

    Article  Google Scholar 

  • Crilly D, Zhelev T (2008a) Emissions targeting and planning—an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector. Energy 33:1498–1507

    Article  CAS  Google Scholar 

  • Crilly D, Zhelev T (2008b) An energy-based targeting technique for treatment and utilisation of greenhouse gas emissions. In: Novosad J (ed) Paper Presented in the 18th International Congress of Chemical and Process Engineering (CHISA)—Summary 4: PRES 2008 and System Engineering, vol 4, pp 1214–1215

  • Čuček L, Klemes J, Kravanja Z (2012a) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20

    Article  Google Scholar 

  • Čuček L, Varbanov PS, Klemeš J, Kravanja Z (2012b) Potential of total site process integration for balancing and decreasing the key environmental footprints. Chem Eng Trans 29:61–66

    Google Scholar 

  • Dewulf J, Van Langenhove H (2002) Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ Sci Pollut Res 9(4):267–273

    Article  CAS  Google Scholar 

  • Dhole VR, Linnhoff B (1993) Total site targets for fuel, cogeneration, emissions and cooling. Comput Chem Eng 17(Suppl):S101–S109

    CAS  Google Scholar 

  • Dincer I, Rosen MA (2007) Exergy: energy, environment and sustainable development. Elsevier, Amsterdam

    Google Scholar 

  • Dinda S (2004) A theoretical basis for the environmental Kuznets curve. Ecol Econ 53:403e13

    Google Scholar 

  • Dinda S, Coondoo D (2006) Income and emission: a panel data based co integrationanalysis. Ecol Econ 57:167e81

    Article  Google Scholar 

  • EPA (2012) Environmental Protection Agency. http://www.epa.gov/climatechange/. Accessed April 2012

  • Friedl B, Getzner M (2003) Determinants of CO2 emissions in a small open economy. Ecol Econ 45:133–148

    Google Scholar 

  • Gadallaa M, Olujic Z, Jobsonc M, Smith R (2007) Estimation and reduction of CO2 emissions from crude oil distillation units. Energy 31(2006):2398–2408

    Google Scholar 

  • Ghannadzadeh A, Perry S, Smith R (2011a) A new shaftwork targeting model for total sites. Chem Eng Trans 25:917–922

    Google Scholar 

  • Ghannadzadeh A, Perry S, Smith R (2011b) Cogeneration targeting for site utility systems. Appl Therm Eng 43:7–13

    Google Scholar 

  • Grossman GM, Krueger AB (1991) Environmental impacts of a North American free trade agreement. NBER working paper 3914. National Bureau of Economic Research, Cambridge, MA

  • Grossman GM, Krueger AB (1995) Economic growth and the environment. Q J Econ 110(2):353–377

    Google Scholar 

  • Harell DA (2004) Resource conservation and allocation via process integration. Ph.D. Thesis, Texas A&M University

  • Hujbregts MAJ, Hellweg S, Frischknecht R et al (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64:798–807

    Article  Google Scholar 

  • International Organization for Standardization (ISO) (2006) Environmental management—life cycle assessment. European Standard ENISO14040 and 14044, Geneva

  • Kapil A, Bulatov I, Smith R, Kim JK (2012) Site-wide low-grade heat recovery with a new cogeneration targeting method. Chem Eng Res Des 90:677–689

    Google Scholar 

  • Karimkashi S, Amidpour M (2012) Total site energy improvement using R-curve concept. Energy 40:329–340

    Google Scholar 

  • Kimura H, Zhu XX (2000) R-curve concept and its application for industrial energy management. IndEngChem Res 39:2315–2335

    CAS  Google Scholar 

  • Klemes J, Dhole VR, Raissi K, Perry SJ, Puigjaner L (1997) Targeting and design methodology for reduction of fuel power and CO2 on total sites. Appl Therm Eng 17(8–10):993–1003

    Article  CAS  Google Scholar 

  • Kraft J, Kraft A (1978) On the relationship between energy and GNP. J Energy Dev 3:401e3

    Google Scholar 

  • Kuznets S (1955) Economic growth and income equality. Am Econ Rev 49:1e28

    Google Scholar 

  • Lee CC, Lee JD (2009) Income and CO2 emissions: evidence from panel unit root and co-integration tests. Energy Policy 3:413e23

    Google Scholar 

  • Lee SC, Ng DKS, Foo DCY, Tan RR (2009) Extended pinch targeting techniques for carbon-constrained energy sector planning. Appl Energy 86:60–67

    Article  Google Scholar 

  • Makwana Y (1998) Energy retrofit and debottlenecking of total sites. PhD thesis. UMIST, Manchester

  • Managi S, Jena PR (2008) Environmental productivity and Kuznets curve in India. Ecol Econ 65:432e40

    Article  Google Scholar 

  • Manninen J, Zhu XX (1999) Optimal gas turbine integration to the process Industries. IndEngChem Res 38(11):4317e30

    Google Scholar 

  • Martinez-Zarzoso I, Bengochea-Morancho A (2004) Pooled mean group estimation of an environmental Kuznets curve for CO2. Econ Lett 82:121e6

    Article  Google Scholar 

  • Mavromatis SP (1996) Conceptual design and operation of industrial steam turbine networks. PhD thesis. UMIST, Manchester

  • Mavromatis SP, Kokossis AC (1998) Conceptual optimization of utility networks for operational variations—I. targets and level optimization. ChemEngSci 53(8):1585–1608

    CAS  Google Scholar 

  • Medina-Flores JM, Picón-Núñez M (2010) Modelling the power production of single and multiple extraction steam turbines. Chem Eng Sci 65:2811–2820

    Article  CAS  Google Scholar 

  • Mehrara M (2007) Energy consumption and economic growth: the case of oil exporting countries. Energy Policy 35:2939e45

    Article  Google Scholar 

  • Meyer L, Tsatsaronis G, Buchgeister J, Schebek L (2009) Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy Int J 34:75–89

    Article  Google Scholar 

  • Mohan T, El-Halwagi MM (2007) An algebraic targeting approach for effective utilization of biomass in combined heat and power systems through process integration. Clean Technol Environ Policy 9:13–25

    Article  Google Scholar 

  • Monfreda C, Wackernagel M, Deumling D (2004) Establishing natural capital accounts based on detailed ecological footprint and biological capacity assessment. Land Use Policy 21:231–246

    Article  Google Scholar 

  • Morosuk T, Tsatsaronis G, Boyano A, Gantiva C (2012) Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation. Int J Energy Environ Eng 3:1

    Article  Google Scholar 

  • Narayan PK, Narayan S, Prasad A (2008) A structural VAR analysis of electricity consumption and real GDP: evidence from the G7 countries. Energy Policy 36:2765e9

    Google Scholar 

  • Nishio M, Johnson AI (1977) Strategy for energy system expansion. ChemEngProg 1:73e80

    Google Scholar 

  • Nishio M, Itoh J, Shiroko K, Umeda T (1980) A thermodynamic approach to steam power system design. IndEngChem Process Des Dev 19:306–312

    Article  CAS  Google Scholar 

  • Ooi REH, Foo DCY, Ng DKS, Tan RR (2012) Graphical targeting tool for the planning of carbon capture and storage. Chem Eng Trans 29:415–420

    Google Scholar 

  • Pao HT, Tsai CM (2010) CO2emissions, energy consumption and economic growth in BRIC countries. Energy Policy 38:7850–7860

    Google Scholar 

  • Raissi K (1994) Total site integration. Ph.D. Thesis, UMIST, Manchester

  • Salisbury JK (1942) The steam turbine regenerative cycle—an analytical approach. ASME Trans 64:231–245

    Google Scholar 

  • Sima Pro (2007) User’s manual. Pre Consultants BV, Amersfoort, NL

    Google Scholar 

  • Smith R (2005) Chemical process design and integration. Wiley, New York

    Google Scholar 

  • Sorin M, Hammache A (2005) A new thermodynamic model for shaftwork targeting on total sites. Appl Therm Eng 25:961–972

    Article  Google Scholar 

  • Stern DI (2004) The rise and fall of the environmental Kuznets curve. World Dev 32:1419e39

    Article  Google Scholar 

  • Stupara G, Tucakovića D, Živanovića T, Banjaca M, Beloševićb S, Beljanskib V, Tomanovićb I, Crnomarkovićb N, Sijerčićb M (2012) The influence of primary measures for reducing NO x emissions on energy steam boiler efficiency. In: Proceedings of ECOS 2012—the 25th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, vol 125, pp 1–13, June 26–29, 2012, Perugia, Italy

  • Tan RR, Foo DCY (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32:1422–1429

    Article  Google Scholar 

  • Tan RR, Foo DCY, Ng DKS (2009) Pinch analysis approach to carbon-constrained planning for sustainable power generation. J Clean Prod 17(10):940–944

    Article  Google Scholar 

  • Tjan W, Tan RR, Foo DCY (2010) A graphical representation of carbon footprint reduction for chemical processes. J Clean Prod 18:848–856

    Article  CAS  Google Scholar 

  • Varbanov PS, Doyle S, Smith R (2004) Modelling and optimization of utility systems. ChemEng Res Des 82(A5):561e78

    Google Scholar 

  • World Bank (2007) The little green data book 2007. The World Bank, Washington, DC

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Iran Power Plant Project Management Company (MAPNA Group) for data and financial support. This work is also supported by K. N. Toosi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. H. Khoshgoftar Manesh or M. Amidpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshgoftar Manesh, M.H., Navid, P., Amidpour, M. et al. New procedure for optimal design of cogeneration system with considering environmental impacts and total cost. Clean Techn Environ Policy 15, 893–919 (2013). https://doi.org/10.1007/s10098-012-0576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0576-0

Keywords

Navigation