Skip to main content
Log in

Implementation of MALDI-TOF MS technology for the identification of clinical isolates of Mycobacterium spp. in mycobacterial diagnosis

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

A total of 243 clinical isolates of the Mycobacterium genus were studied, 143 and 100 using two protocols (Protocol v2 and Protocol v3, respectively) provided by the manufacturer. The overall correlation of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the standard identification methods was 63.8 %. The rate of misidentification was 3.2 %, mainly affecting very close species. In Protocol v2, the correlation was 57.3 %, being greater in solid than in liquid media (71.7 % vs. 44.7 %, p < 0.05). Albeit not significant, a trend to a greater correlation for M. tuberculosis complex compared to non-tuberculous mycobacteria (NTM) (63.6 % vs. 55.5 %) was observed. In Protocol v3, the correlation was 73 %, with no significant differences between solid and liquid media (70.8 % vs. 75 %). In conclusion, MALDI-TOF MS may play a role in identifying mycobacterial species isolated from clinical samples, being faster than sequencing and hybridization-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tortoli E (2003) Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16:319–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. World Health Organization (WHO) (2013) Global tuberculosis report 2013. WHO Press, Geneva, Switzerland. WHO/HTM/TB/2013.15

  3. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P et al (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 42:1604–1613. doi:10.1183/09031936.00149212

    Article  PubMed  Google Scholar 

  4. Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220. doi:10.3978/j.issn.2072-1439.2013.12.24

    PubMed Central  PubMed  Google Scholar 

  5. Pfyffer GE, Palicova F (2011) Mycobacterium: general characteristics, laboratory detection, and staining procedures. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. ASM Press, Washington, DC, pp 472–502. doi:10.1128/9781555816728.ch28

    Google Scholar 

  6. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  PubMed  Google Scholar 

  7. Hettick JM, Kashon ML, Simpson JP, Siegel PD, Mazurek GH, Weissman DN (2004) Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:5769–5776

    Article  CAS  PubMed  Google Scholar 

  8. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551. doi:10.1086/600885

    Article  CAS  PubMed  Google Scholar 

  9. Pignone M, Greth KM, Cooper J, Emerson D, Tang J (2006) Identification of mycobacteria by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. J Clin Microbiol 44:1963–1970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One 6:e24720. doi:10.1371/journal.pone.0024720

    Article  PubMed Central  PubMed  Google Scholar 

  11. Saleeb PG, Drake SK, Murray PR, Zelazny AM (2011) Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1790–1794. doi:10.1128/JCM.02135-10

    Article  PubMed Central  PubMed  Google Scholar 

  12. Balážová T, Makovcová J, Šedo O, Slaný M, Faldyna M, Zdráhal Z (2014) The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling. FEMS Microbiol Lett 353:77–84. doi:10.1111/1574-6968.12408

    Article  PubMed  Google Scholar 

  13. González J, Tudó G, Gómez J, García A, Navarro M, Jiménez de Anta MT (1998) Use of microscopic morphology in smears prepared for radiometric cultures from presumptive identification of Mycobacterium tuberculosis complex, Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi. Eur J Clin Microbiol Infect Dis 17:493–500

    Article  PubMed  Google Scholar 

  14. Espasa M, González-Martín J, Alcaide F, Aragón LM, Lonca J, Manterola JM et al (2005) Direct detection in clinical samples of multiple gene mutations causing resistance of Mycobacterium tuberculosis to isoniazid and rifampicin using fluorogenic probes. J Antimicrob Chemother 55:860–865

    Article  CAS  PubMed  Google Scholar 

  15. Lebrun L, Espinasse F, Poveda JD, Vincent-Levy-Frebault V (1992) Evaluation of nonradioactive DNA probes for identification of mycobacteria. J Clin Microbiol 30:2476–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bruker Daltonics, Inc. (2013) Standard operating procedure: Mycobacteria extraction (MycoEX) method (version 2.0). Bruker Daltonics Inc., Bremen. http://www.bruker.com/

    Google Scholar 

  18. Bruker Daltonics, Inc. (2014) Standard operating procedure: Mycobacteria extraction (MycoEX) method (version 3.0). Bruker Daltonics Inc., Bremen. http://www.bruker.com/

    Google Scholar 

  19. Balada-Llasat JM, Kamboj K, Pancholi P (2013) Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol 51:2875–2879. doi:10.1128/JCM.00819-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Panda A, Kurapati S, Samantaray JC, Myneedu VP, Verma A, Srinivasan A et al (2013) Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry. Indian J Med Microbiol 31:117–122

    CAS  PubMed  Google Scholar 

  21. Lotz A, Ferroni A, Beretti JL, Dauphin B, Carbonnelle E, Guet-Revillet H et al (2010) Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:4481–4486. doi:10.1128/JCM.01397-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Buchan BW, Riebe KM, Timke M, Kostrzewa M, Ledeboer NA (2014) Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am J Clin Pathol 141:25–34. doi:10.1309/AJCPBPUBUDEW2OAG

    Article  CAS  PubMed  Google Scholar 

  23. Parsons LM, Somoskövi A, Gutierrez C, Lee E, Paramasivan CN, Abimiku A et al (2011) Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev 24(2):314–350. doi:10.1128/CMR.00059-10

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Fondo de Investigación Sanitaria (grant FIS13/01752), Sociedad Española de Neumología y Cirugía Torácica (SEPAR 1007/2010), and the Spanish Network for the Research in Infectious Diseases (REIPI, RD12/0015 to GT) from the Ministry of Health, Spain.

The authors belong to the Study Group of Mycobacterial Infections (GEIM) of the Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) and to the research team awarded for quality control by Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya (AGAUR, 2014 SGR 653).

The authors would like to thank D.P. for the revision of the English language in this paper.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gonzalez-Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudó, G., Monté, M.R., Vergara, A. et al. Implementation of MALDI-TOF MS technology for the identification of clinical isolates of Mycobacterium spp. in mycobacterial diagnosis. Eur J Clin Microbiol Infect Dis 34, 1527–1532 (2015). https://doi.org/10.1007/s10096-015-2381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2381-2

Keywords

Navigation