Skip to main content

Advertisement

Log in

High levels of CD4+ CTLA-4+ Treg cells and CCR5 density in HIV-1-infected patients with visceral leishmaniasis

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Visceral leishmaniasis (VL) in HIV-1-infected patients has been associated with poor immunological recovery and frequent disease relapses. The aim of this study was to analyse the role of T cell populations, Treg cells and CCR5 density in patients with VL compared to HIV-1-infected patients without leishmaniasis. A cross-sectional study of nine Leishmania–HIV-1-coinfected (LH) patients with VL receiving suppressive cART for at least 1 year were compared to 16 HIV-1-infected patients with non-immunological response (NIR, CD4 count below 250 cells/mm3) and 26 HIV-1-infected patients with immunological response (IR, CD4 count above 500 cells/mm3) without leishmaniasis. LH patients had a deep depletion of naïve T cells (p = 0.002), despite similar levels of effector T cells compared to NIR patients. CD4 Treg cells were similar compared to NIR patients, but higher compared to IR patients (p < 0.001). Interestingly, CD4 Treg CTLA-4+ cells were higher in LH patients compared to either NIR or IR patients (p = 0.022 and p < 0.001, respectively), and the CD4 Treg/TEM ratio was similar to NIR patients, but higher compared to IR patients (p = 0.017). CCR5+ T cell levels were higher compared to IR patients (p < 0.001), while CCR5 density on T cells were higher compared to both NIR and IR patients (p < 0.005 in both cases). Higher levels of CD4+ CTLA-4+ Treg cells and CCR5 density on CD8+ T cells are strongly associated with VL in HIV-1-infected patients. Also, these patients have a poor immunological profile that might explain the persistence and relapse of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alvar J, Aparicio P, Aseffa A et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Casado JL, Lopez-Velez R, Pintado V et al (2001) Relapsing visceral leishmaniasis in HIV infected patients undergoing successful protease inhibitor therapy. Eur J Clin Microbiol Infect Dis 20:202–205

    CAS  PubMed  Google Scholar 

  3. Pintado V, Martín-Rabadán P, Rivera ML et al (2001) Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore) 80:54–73

    Article  CAS  Google Scholar 

  4. Desjeux P, Alvar J (2003) Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97:3–15

    Article  PubMed  Google Scholar 

  5. del Giudice P, Mary-Krause M, Pradier C et al (2002) Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis 186:1366–1370

    Article  PubMed  Google Scholar 

  6. Cota GF, de Sousa MR, Rabello A (2011) Predictors of visceral leishmaniasis relapse in HIV-infected patients: a systematic review. PLoS Negl Trop Dis 5:e1153

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cacopardo B, Nigro L, Preiser W et al (1996) Prolonged Th2 cell activation and increased viral replication in HIV–Leishmania co-infected patients despite treatment. Trans R Soc Trop Med Hyg 90:434–435

  8. Peruhype-Magalhães V, Martins-Filho OA, Prata A et al (2006) Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-gamma and interleukin-10 and low frequency of tumour necrosis factor-alpha(+) monocytes are hallmarks of active human visceral leishmaniasis due to Leishmania chagasi infection. Clin Exp Immunol 146:124–132

    Article  PubMed Central  PubMed  Google Scholar 

  9. Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360

    Article  CAS  PubMed  Google Scholar 

  10. Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host–microorganism interactions. Annu Rev Immunol 27:551–589

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez AM, Yang Y (2011) The role of natural regulatory T cells in infection. Immunol Res 49:124–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Miyara M, Sakaguchi S (2011) Human Foxp3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89:346–351

    Article  CAS  PubMed  Google Scholar 

  13. Mendez S, Reckling SK, Piccirillo CA et al (2004) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200:201–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nylén S, Maurya R, Eidsmo L et al (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204:805–817

    Article  PubMed Central  PubMed  Google Scholar 

  15. Belkaid Y, Piccirillo CA, Mendez S et al (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  CAS  PubMed  Google Scholar 

  16. Suffia IJ, Reckling SK, Piccirillo CA et al (2006) Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203:777–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Reynes J, Portales P, Segondy M et al (2000) CD4 cell surface CCR5 density as a determining factor of viral load in HIV-infected individuals. J Infect Dis 181:927–932

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Jiao YM, Wang R et al (2012) High CCR5 density on central memory CD4+ T cells in acute HIV-1 infection is mostly associated with rapid disease progression. PLoS One 7:e49526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Barreto-de-Souza V, Pacheco GJ, Silva AR et al (2006) Increased Leishmania replication in HIV-1-infected macrophages is mediated by tat protein through cyclooxygenase-2 expression and prostaglandin E2 synthesis. J Infect Dis 194:846–854

    Article  CAS  PubMed  Google Scholar 

  20. Mock DJ, Hollenbaugh JA, Daddacha W et al (2012) Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog 8:e1002635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sato N, Kuziel WA, Melby PC et al (1999) Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol 163:5519–5525

    CAS  PubMed  Google Scholar 

  22. Dasgupta B, Roychoudhury K, Ganguly S et al (2003) Infection of human mononuclear phagocytes and macrophage-like THP1 cells with Leishmania donovani results in modulation of expression of a subset of chemokines and a chemokine receptor. Scand J Immunol 57:366–374

    Article  CAS  PubMed  Google Scholar 

  23. Zhao C, Papadopoulou B, Tremblay MJ (2004) Leishmania infantum enhances human immunodeficiency virus type-1 replication in primary human macrophages through a complex cytokine network. Clin Immunol 113:81–88

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharyya S, Dey R, Majumder N et al (2008) A novel approach to regulate experimental visceral leishmaniasis in murine macrophages using CCR5 siRNA. Scand J Immunol 67:345–353

    Article  CAS  PubMed  Google Scholar 

  25. Antinori S, Calattini S, Longhi E et al (2007) Clinical use of polymerase chain reaction performed on peripheral blood and bone marrow samples for the diagnosis and monitoring of visceral leishmaniasis in HIV-infected and HIV-uninfected patients: a single-center, 8-year experience in Italy and review of the literature. Clin Infect Dis 44:1602–1610

    Article  CAS  PubMed  Google Scholar 

  26. Panel de expertos de GESIDA; Plan Nacional sobre el Sida (2008) Treatment of opportunistic infections in adolescent and adult patients infected with the human immunodeficiency virus during the era of highly active antiretroviral therapy. AIDS Study Group (GESIDA) and National AIDS Plan Expert Committee. Enferm Infecc Microbiol Clin 26:356–379

    Article  Google Scholar 

  27. Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  28. Tai X, Van Laethem F, Pobezinsky L et al (2012) Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 119:5155–5163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bandera A, Ferrario G, Saresella M et al (2010) CD4+ T cell depletion, immune activation and increased production of regulatory T cells in the thymus of HIV-infected individuals. PLoS One 5:e10788

    Article  PubMed Central  PubMed  Google Scholar 

  30. Nilsson J, Boasso A, Velilla PA et al (2006) HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108:3808–3817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Presicce P, Orsborn K, King E et al (2011) Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 6:e28118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chevalier MF, Weiss L (2013) The split personality of regulatory T cells in HIV infection. Blood 121:29–37

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh SM, Chen MY, Pan SC et al (2007) Aberrant induction of regulatory activity of CD4+CD25+ T cells by dendritic cells in HIV-infected persons with amebic liver abscess. J Acquir Immune Defic Syndr 44:6–13

    Article  PubMed  Google Scholar 

  34. Krathwohl MD, Schacker TW, Anderson JL (2006) Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193:494–504

    Article  CAS  PubMed  Google Scholar 

  35. Manches O, Munn D, Fallahi A et al (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118:3431–3439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. de Freitas Balanco JM, Moreira ME, Bonomo A et al (2001) Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 11:1870–1873

    Article  PubMed  Google Scholar 

  37. Nigro L, Rizzo ML, Vancheri C et al (2007) CCR5 and CCR3 expression on T CD3+ lymphocytes from HIV/Leishmania co-infected subjects. Med Microbiol Immunol 196:253–255

  38. Reynes J, Portales P, Segondy M et al (2001) CD4 T cell surface CCR5 density as a host factor in HIV-1 disease progression. AIDS 15:1627–1634

    Article  CAS  PubMed  Google Scholar 

  39. Wilkin TJ, Ribaudo HR, Tenorio AR et al (2010) The relationship of CCR5 antagonists to CD4+ T-cell gain: a meta-regression of recent clinical trials in treatment-experienced HIV-infected patients. HIV Clin Trials 11:351–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Spanish AIDS Network “Red Temática Cooperativa de Investigación en SIDA” (RD06/0006), the Spanish National Health System and “Instituto de Salud Carlos III” grant FIS-PI13-01024.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Vallejo or J. L. Casado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo, A., Abad-Fernández, M., Moreno, S. et al. High levels of CD4+ CTLA-4+ Treg cells and CCR5 density in HIV-1-infected patients with visceral leishmaniasis. Eur J Clin Microbiol Infect Dis 34, 267–275 (2015). https://doi.org/10.1007/s10096-014-2229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2229-1

Keywords

Navigation