Skip to main content
Log in

Virtual element method stabilization for convection-diffusion-reaction problems using the link-cutting condition

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we present a methodology for stabilizing the virtual element method applied to the convection-diffusion-reaction equation. The stabilization is carried out modifying the mesh inside the boundary layer so that the link-cutting condition is satisfied. The method provides a stable solution to all regimes. Numerical examples are presented for several regimes in which satisfactory results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakhvalov, N.: The optimization of methods of solving boundary value problems with a boundary layer. Comp. Math. Math. Phys. 9(4), 139–166 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.: Basic principles of virtual element methods. Math. Mod. Meth. Appl. S 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Veiga, L., Brezzi, F., Marini, L., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Mod. Meth. Appl. S. 24(08), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Mod. Meth. Appl. S. 26(4), 729–750 (2016). doi:10.1142/S0218202516500160

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Bristeau, M., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the galerkin method with bubble functions. Comput. Meth. Appl. Mech. Engrg. 96, 117–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Franca, L., Hughes, T., Russo, A.: \(b=\int g\). Comput. Meth. Appl. Mech. Engrg. 145, 329–339 (1997)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Hauke, G., Marini, L., Sangalli, G.: Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. Math. Mod. Meth. Appl. S. 13, 445–461 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Marini, L., Russo, A.: On the choice of a stabilizing subgrid for convection-diffusion problems. Comput. Meth. Appl. Mech. Engrg. 194(2), 127–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Meth. Appl. Mech. Engrg. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Russo, A.: Choosing bubbles for advection-diffusion problems. Math. Mod. Meth. Appl. S. 4, 571–587 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brooks, A., Hughes, T.: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Engrg. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hauke, G.: A simple stabilized method for the advection-diffusion-reaction equation. Comput. Meth. Appl. Mech. Engrg. 191, 2925–2947 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, T.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Meth. Appl. Mech. Engrg. 127, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, T., Feijoo, G., Mazzei, L., Quincy, J.: The variational multiscale method: a paradigm for computational mechanics. Comput. Meth. Appl. Mech. Engrg. 166, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, J.J., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific (2012)

  18. Roos, H.G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, vol. 24. Springer Science and Business Media, (2008)

Download references

Acknowledgments

The author wishes to thank L. D. Marini, F. Brezzi, A. Russo and L. Beirão da Veiga for useful discussions. Also, the author gratefully thanks the Department of Mathematics of the University of Pavia for kind hospitality. This work has been partially funded by the Spanish MECD under FPU Grant AP210-2073, Gobierno de Aragón and FEDER funding from the European Union (Grupo Consolidado de Mecánica de Fluidos Computacional T21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Irisarri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irisarri, D. Virtual element method stabilization for convection-diffusion-reaction problems using the link-cutting condition. Calcolo 54, 141–154 (2017). https://doi.org/10.1007/s10092-016-0180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-016-0180-5

Keywords

Mathematics Subject Classification

Navigation