Skip to main content

Advertisement

Log in

Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Oxidative stress has been hypothesized to play a major role in the development of PD in various studies. This study assessed to investigate oxidative and anti-oxidative status in PD patients. We evaluated oxidant/antioxidant status by measuring serum malondialdehyde (MDA) levels, xanthine oxidase (XO) activities, and activities of antioxidant enzymes, namely, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). The study included 29 patients with PD and 32 healthy subjects as controls. Comparison of oxidative parameters in the patient and control groups revealed significantly higher GSH-Px and XO activities in the patient group. Serum MDA and SOD activities in PD patients were not significantly different from the controls. MDA was negatively correlated with duration of the PD and positively with age of onset. There was a negative correlation between SOD and Hoehn and Yahr (H&Y) stage. According to these results, we suggest that oxidative stress may contribute to the development of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  2. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 8(9):91

    Google Scholar 

  3. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinic–pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  5. Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s Disease Rating Scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds) Recent Developments in Parkinson’s Disease, 2nd edn. Macmillan Health Care Information, Florham Park, pp 153–164

    Google Scholar 

  6. Dahle LK, Hill EG, Holman RT (1962) The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys 98:53–261

    Article  Google Scholar 

  7. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  8. Durak I, Canbolat O, Kavutcu M, Ozturk HS, Yurtarslani Z (1996) Activities of total, cytoplasmic, and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal 10(1):17–20

    Article  CAS  PubMed  Google Scholar 

  9. Hashimato S (1974) A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Anal Biochem 62(2):426–435

    Article  Google Scholar 

  10. Neurologic Diseases in the Elderly Research Group, de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurology 54(11 Suppl 5):S21–S23

    Google Scholar 

  11. Garrido M, Tereshchenko Y, Zhevtsova Z, Taschenberger G, Bahr M, Kugler S (2011) Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol 121:475–485

    Article  CAS  PubMed  Google Scholar 

  12. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198:221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghezzi P, Jaquet V, Marcucci F, Schmidt HH (2016) The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. doi:10.1111/bph.13544

    PubMed  Google Scholar 

  14. Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265

    Article  PubMed  Google Scholar 

  15. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family–an evolutionary overview. FEBS J 275(15):3959–3970

    Article  CAS  PubMed  Google Scholar 

  16. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ (2003) Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 278(33):31426–31433

    Article  CAS  PubMed  Google Scholar 

  17. Kostić DA, Dimitrijević DS, Stojanavić GS, Palić IR, Dordević AS, Ickovski D (2015) Xanthine oxidase: isolation, assays of activity, and inhibition. J Chem. doi:10.1155/2015/294858

    Google Scholar 

  18. Kilinç A, Yalçin AS, Yalçin D, Taga Y, Emerk K (1988) Increased erythrocyte susceptibility to lipid peroxidation in human Parkinson’s disease. Neurosci Lett 87:307–310

    Article  PubMed  Google Scholar 

  19. Abraham S, Soundararajan CC, Vivekanandhan S, Behari M (2005) Erythrocyte antioxidant enzymes in Parkinson’s disease. Indian J Med Res 121:111

    CAS  PubMed  Google Scholar 

  20. Poirier J, Barbeau A (1987) Erythrocyte antioxidant activity in human patients with Parkinson disease. Neurosci Lett 75:345–348

    Article  CAS  PubMed  Google Scholar 

  21. Kalra J, Rajput AH, Mantha SV, Prasad K (1992) Serum antioxidant enzyme activity in Parkinson’s disease. Mol Cell Biochem 110(2):165–168

    Article  CAS  PubMed  Google Scholar 

  22. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  CAS  PubMed  Google Scholar 

  23. Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850 8:1607–1621

    Article  Google Scholar 

  24. Obata T, Kubota S, Yamanaka Y (2001) Allopurinol supresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP+ induced hydroxyl radical generation in rat striatum. Neurosci Lett 306(1–2):9–12

    Article  CAS  PubMed  Google Scholar 

  25. Sudha K, Rao AV, Rao S, Rao A (2003) Free radical toxicity and antioxidants in Parkinson’s disease. Neurol India 51(1):60–62

    CAS  PubMed  Google Scholar 

  26. Baillet A, Chanteperdrix V, Trocmé C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35(10):1530–1537

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD (2008) Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat Disord 14(1):52–57

    Article  PubMed  Google Scholar 

  28. Ahlskog JE, Uitti RJ, Low PA, Tyce GM, Nickander KK, Petersen RC, Kokmen E (1995) No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease. Mov Disord 10(5):566–573

    Article  CAS  PubMed  Google Scholar 

  29. Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G (1997) Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol 12(2):63–68

    CAS  PubMed  Google Scholar 

  30. de Farias CC, Maes M, Bonifácio KL, Bortolasci CC, de Souza Nogueira A, Brinholi FF, Matsumoto AK, do Nascimento MA, de Melo LB, Nixdorf SL, Lavado EL, Moreira EG, Barbosa DS (2016) Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: disease and staging biomarkers and new drug targets. Neurosci Lett 617:66–71

    Article  PubMed  Google Scholar 

  31. Sanyal J, Bandyopadhyay SK, Banerjee TK, Mukherjee SC, Chakraborty DP, Ray BC, Rao VR (2009) Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci 13(2):129–132

    CAS  PubMed  Google Scholar 

  32. Chen CM, Liu JL, Wu YR, Chen YC, Cheng HS, Cheng ML, Chiu DT (2009) Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis 33(3):429–435

    Article  CAS  PubMed  Google Scholar 

  33. Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43:200–227

    Article  CAS  PubMed  Google Scholar 

  34. Colamartino M, Santoro M, Duranti G, Sabatini S, Ceci R, Testa A, Padua L, Cozzi R (2015) Evaluation of levodopa and carbidopa antioxidant activity in normal human lymphocytes in vitro: implication for oxidative stress in Parkinson’s disease. Neurotox Res 27(2):106–117

    Article  CAS  PubMed  Google Scholar 

  35. Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Gökçe Çokal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed on human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants who included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçe Çokal, B., Yurtdaş, M., Keskin Güler, S. et al. Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson’s disease. Neurol Sci 38, 425–431 (2017). https://doi.org/10.1007/s10072-016-2782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2782-8

Keywords

Navigation