Skip to main content
Log in

Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The risky working environments of divers and pilots, and the possible role of extreme ambient pressure in carotid stenosis, make ischemic stroke an important occupational concern among these professionals. In this study, we aimed to evaluate the association of being exposed to hyperbaric or hypobaric conditions with carotid artery stenosis by comparing common carotid intima-media thickness (CCIMT) and blood flow velocities of cerebral arteries in divers and pilots using carotid duplex ultrasound (CDUS) and transcranial Doppler (TCD). CDUS and transtemporal TCD were performed in 29 divers, 36 pilots and 30 control participants. Medical history, blood pressure, lipid profile and blood sugar were recorded to control the previously well-known risk factors of atherosclerosis. Findings of the CDUS and TCD [including: CCIMT and blood flow velocities of internal carotid artery (ICA), common carotid artery (CCA), and middle cerebral artery (MCA)] of divers and pilots were compared with those of the control group using regression analysis models. Both right and left side CCIMT were significantly higher in divers (P < 0.05) and pilots (P < 0.05) in comparison with the control group. Carotid index [peak systolic velocity (PSV) of ICA/PSV of CCA) of divers and pilots were also higher than the control group. TCD findings were not significantly different between divers, pilots, and the control group. Increased CCIMT and carotid index in diver and pilot groups appear to be suggestive of accelerated atherosclerosis of carotid artery in these occupational groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Todnem K, Nyland H, Kambestad B, Aarli J (1990) Influence of occupational diving upon the nervous system: an epidemiological study. Occup Environ Med 47(10):708–714. doi:10.1136/oem.47.10.708

    Article  CAS  Google Scholar 

  2. Evans S, Radcliffe S (2012) The annual incapacitation rate of commercial pilots. Aviat Space Environ Med 83(1):42–49. doi:10.3357/asem.3134.2012

    Article  PubMed  Google Scholar 

  3. Helgason C, Wolf P (1997) American Heart Association Prevention Conference IV: prevention and rehabilitation of stroke: executive summary. Circulation 96(2):701–707. doi:10.1161/01.cir.96.2.701

    Article  CAS  PubMed  Google Scholar 

  4. Carroll B (1991) Carotid sonography. Radiology 178(2):303–313. doi:10.1148/radiology.178.2.1987583

    Article  CAS  PubMed  Google Scholar 

  5. Ringelstein E (1995) Skepticism toward carotid ultrasonography: a virtue, an attitude, or fanaticism? Stroke 26(10):1743–1746. doi:10.1161/01.str.26.10.1743

    Article  CAS  PubMed  Google Scholar 

  6. Bladin C, Alexandrov A, Murphy J, Maggisano R, Norris J (1995) Carotid stenosis index: a new method of measuring internal carotid artery stenosis. Stroke 26(2):230–234. doi:10.1161/01.str.26.2.230

    Article  CAS  PubMed  Google Scholar 

  7. O’Leary D, Polak J, Wolfson S, Bond M, Bommer W, Sheth S et al (1991) Use of sonography to evaluate carotid atherosclerosis in the elderly. The Cardiovascular Health Study. CHS Collaborative Research Group. Stroke 22(9):1155–1163. doi:10.1161/01.str.22.9.1155

    Article  PubMed  Google Scholar 

  8. Zwiebel W (1992) Duplex sonography of the cerebral arteries: efficacy, limitations, and indications. Am J Roentgenol 158(1):29–36. doi:10.2214/ajr.158.1.1727355

    Article  CAS  Google Scholar 

  9. Suwanwela N, Can U, Furie K, Southern J, Macdonald N, Ogilvy C et al (1996) Carotid Doppler ultrasound criteria for internal carotid artery stenosis based on residual lumen diameter calculated from en bloc carotid endarterectomy specimens. Stroke 27(11):1965–1969. doi:10.1161/01.str.27.11.1965

    Article  CAS  PubMed  Google Scholar 

  10. Dick A, Massey E (1985) Neurologic presentation of decompression sickness and air embolism in sport divers. Neurology 35(5):667. doi:10.1212/wnl.35.5.667

    Article  CAS  PubMed  Google Scholar 

  11. Knauth M, Ries S, Pohimann S, Kerby T, Forsting M, Daffertshofer M et al (1997) Cohort study of multiple brain lesions in sport divers: role of a patent foramen ovale. BMJ 314(7082):701. doi:10.1136/bmj.314.7082.701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lier H, Schroeder S, Hering R (2004) Persistierendes Foramen ovale: ein unterschätztes Risiko für Taucher? DMW Deutsche Medizinische Wochenschrift 129(1/2):27–30. doi:10.1055/s-2004-812652

    Article  CAS  Google Scholar 

  13. Schwerzmann M (2001) Relation between directly detected patent foramen ovale and ischemic brain lesions in sport divers. Ann Intern Med 134(1):21. doi:10.7326/0003-4819-134-1-200101020-00009

    Article  CAS  PubMed  Google Scholar 

  14. Buttinelli C, Beccia M, Argentino C (2002) Stroke in a scuba diver with patent foramen ovale. Eur J Neurol 9(1):89–91. doi:10.1046/j.1468-1331.2002.00347.x

    Article  PubMed  Google Scholar 

  15. Rosińska J, Łukasik M, Kozubski W (2015) Neurological complications of underwater diving. Neurol Neurochir Pol 49(1):45–51. doi:10.1016/j.pjnns.2014.11.004

    PubMed  Google Scholar 

  16. Mehrpour M, Rezaali S, Shams-Hosseini NS (2014) Increased carotid intima-media thickness in scuba divers. Iran J Neurol 13(1):45

    PubMed  PubMed Central  Google Scholar 

  17. Fereshtehnejad S, Mehrpour M, Mahmoodi S, Bassir P, Dormanesh B, Motamed M (2012) The long-term effects of hypobaric and hyperbaric conditions on brain hemodynamic: a transcranial Doppler ultrasonography of blood flow velocity of middle cerebral and basilar arteries in pilots and divers. Perspect Med 1(1–12):316–320. doi:10.1016/j.permed.2012.01.002

    Article  Google Scholar 

  18. Clarke C (2006) Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med J 82(973):748–753. doi:10.1136/pgmj.2006.047662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaalan W, Wahlgren C, Desai T, Piano G, Skelly C, Bassiouny H (2008) Reappraisal of velocity criteria for carotid bulb/internal carotid artery stenosis utilizing high-resolution B-mode ultrasound validated with computed tomography angiography. J Vasc Surg 48(1):104–112. doi:10.1016/j.jvs.2008.02.068

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blackshear W, Phillips D, Chikos P, Harley J, Thiele B, Strandness D (1980) Carotid artery velocity patterns in normal and stenotic vessels. Stroke 11(1):67–71. doi:10.1161/01.str.11.1.67

    Article  CAS  PubMed  Google Scholar 

  21. Hankey G, Jamrozik K, Broadhurst R, Forbes S, Burvill P, Anderson C, Stewart-Wynne E (2000) Five-year survival after first-ever stroke and related prognostic factors in the perth community stroke study. Stroke 31(9):2080–2086. doi:10.1161/01.str.31.9.2080

    Article  CAS  PubMed  Google Scholar 

  22. Sacco R (1998) Identifying patient populations at high risk for stroke. Neurology 51(Issue 3, Supplement 3):S27–S30. doi:10.1212/wnl.51.3_suppl_3.s27

    Article  CAS  PubMed  Google Scholar 

  23. Touboul P, Elbaz A, Koller C, Lucas C, Adrai V, Chedru F et al (2000) Common carotid artery intima-media thickness and brain infarction: the Etude du Profil Genetique de l’Infarctus Cerebral (GENIC) Case–Control Study. Circulation 102(3):313–318. doi:10.1161/01.cir.102.3.313

    Article  CAS  PubMed  Google Scholar 

  24. Wendell C, Zonderman A, Metter E, Najjar S, Waldstein S (2009) Carotid intimal medial thickness predicts cognitive decline among adults without clinical vascular disease. Stroke 40(10):3180–3185. doi:10.1161/strokeaha.109.557280

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sander K, Bickel H, Förstl H, Etgen T, Briesenick C, Poppert H, Sander D (2010) Carotid- intima media thickness is independently associated with cognitive decline. The INVADE study. Int J Geriat Psychiatry 25(4):389–394. doi:10.1002/gps.2351

    Article  CAS  Google Scholar 

  26. Silvestrini M, Gobbi B, Pasqualetti P, Bartolini M, Baruffaldi R, Lanciotti C et al (2009) Carotid atherosclerosis and cognitive decline in patients with Alzheimer’s disease. Neurobiol Aging 30(8):1177–1183. doi:10.1016/j.neurobiolaging.2007.11.008

    Article  PubMed  Google Scholar 

  27. Zhong W, Cruickshanks K, Schubert C, Acher C, Carlsson C, Klein B et al (2012) Carotid atherosclerosis and 10-year changes in cognitive function. Atherosclerosis 224(2):506–510. doi:10.1016/j.atherosclerosis.2012.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moon J, Lim S, Han J (2015) Carotid intima-media thickness is associated with the progression of cognitive impairment in older adults. J Vasc Surg 62(2):519. doi:10.1016/j.jvs.2015.06.198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kia Vosoughi.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dormanesh, B., Vosoughi, K., Akhoundi, F.H. et al. Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots. Neurol Sci 37, 1911–1916 (2016). https://doi.org/10.1007/s10072-016-2674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2674-y

Keywords

Navigation