Skip to main content

Advertisement

Log in

Polyclonal neural cell adhesion molecule antibody prolongs the effective duration time of botulinum toxin in decreasing muscle strength

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

This study aimed to investigate if the effective duration time of botulinum toxin A (Btx-A) could be prolonged by polyclonal neural cell adhesion molecule antibody (P-NCAM-Ab). 175 male SD rats were randomly divided into three major groups: control group (n = 25), Btx-A group (n = 25), and P-NCAM-Ab groups. P-NCAM-Ab groups were composed of five sub-groups, with 25 rats each in the dose-response study. Muscle strength of rat lower limbs was determined using a survey system. The expressions of muscle-specific receptor tyrosine kinase (MuSK) and neural cell adhesion molecule (NCAM) were determined by real-time polymerase chain reactions (RT-PCR) and western blotting (WB). The muscle strength was significantly decreased by Btx-A in Btx-A/P-NCAM-Ab groups compared with normal control group. Besides, the muscle strength of P-NCAM-Ab group was significantly decreased compared with the Btx-A group. The recovery time of muscle strength in P-NCAM-Ab group was significantly longer compared with Btx-A group. RT-PCR and WB assay showed that PNCAM-Ab delayed the increase of MuSK and NCAM after Btx-A injection. P-NCAM-Ab prolongs the effective duration time of Btx-A in decreasing muscle strength, which could provide a novel enhancement in clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rossetto O, Morbiato L, Caccin P, Rigoni M, Montecucco C (2006) Presynaptic enzymatic neurotoxins. J Neurochem 97(6):1534–1545

    Article  CAS  PubMed  Google Scholar 

  2. Montecucco C, Molgó J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5(3):274–279

    Article  CAS  PubMed  Google Scholar 

  3. Foley N, Pereira S, Salter K et al (2013) Treatment with botulinum toxin improves upper-extremity function post stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil 94(5):977–989. doi:10.1016/j.apmr.2012.12.006

    Article  PubMed  Google Scholar 

  4. Chinnapongse R, Pappert EJ, Evatt M, Freeman A, Birmingham W (2010) An open-label, sequential dose-escalation, safety, and tolerability study of rimabotulinumtoxinb in subjects with cervical dystonia. Int J Neurosci 120(11):703–710. doi:10.3109/00207454.2010.515047

    Article  CAS  PubMed  Google Scholar 

  5. Gómez-Caravaca MT, Cáceres-Redondo MT, Huertas-Fernández I et al (2014) The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol Sci Sep 20

  6. Krishnan RV (2005) Botulinum toxin: from spasticity reliever to a neuromotor re-learning tool. Int J Neurosci 115(10):1451–1467

    Article  CAS  PubMed  Google Scholar 

  7. Grazzi L, Usai S (2014) Botulinum toxin A: a new option for treatment of chronic migraine with medication overuse. Neurol Sci 35(Suppl 1):37–39. doi:10.1007/s10072-014-1739-z

  8. Pellizzari R, Rossetto O, Schiavo G, Montecucco C (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 354(1381):259–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dolly JO, Aoki KR (2006) The structure and mode of action of different botulinum toxins. Eur J Neurol 13(Suppl 4):1–9

    Article  PubMed  Google Scholar 

  10. Gordon T (2009) The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26(2):E3. doi:10.3171/FOC.2009.26.2.E3

    Article  PubMed  Google Scholar 

  11. Kiselyov VV (2010) NCAM and the FGF-receptor. Adv Exp Med Biol 663:67–79. doi:10.1007/978-1-4419-1170-4_4

    Article  CAS  PubMed  Google Scholar 

  12. Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24(17):4197–4204

    Article  CAS  PubMed  Google Scholar 

  13. Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 40(3):374–380. doi:10.1002/mus.21343

    Article  CAS  PubMed  Google Scholar 

  14. Schäfer R, Wernig A (1998) Polyclonal antibodies against NCAM reduce paralysis-induced axonal sprouting. J Neurocytol 27(8):615–624

    Article  PubMed  Google Scholar 

  15. Jin L, Pan L, Liu W, Guo Y, Zheng Y, Guan Q, Nie Z (2013) IGF-1 Antibody Prolongs the Effective Duration Time of Botulinum Toxin in Decreasing Muscle Strength. Int J Mol Sci 14(5):9051–9061. doi:10.3390/ijms14059051

    Article  PubMed Central  PubMed  Google Scholar 

  16. Pickett A, O’Keeffe R, Judge A, Dodd S (2008) The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon 52(3):455–464. doi:10.1016/j.toxicon.2008.06.021

    Article  CAS  PubMed  Google Scholar 

  17. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10(1):19–26

    Article  CAS  PubMed  Google Scholar 

  18. Thornton MR, Shawcross SG, Mantovani C, Kingham PJ, Birchall MA, Terenghi G (2008) Neurotrophins 3 and 4 differentially regulate NCAM, L1 and N-cadherin expression during peripheral nerve regeneration. Biotechnol Appl Biochem 49(Pt 2):165–174

    Article  CAS  PubMed  Google Scholar 

  19. Bonfanti L, Theodosis DT (2009) Polysialic acid and activity-dependent synapse remodeling. Cell Adhes Migr 3(1):43–50

    Article  Google Scholar 

  20. English AW (2013) Cytokines, growth factors and sprouting at the neuromuscular junction. J Neurocytol 32(5–8):943–960

    Google Scholar 

  21. Booth CM, Kemplay SK, Brown MC (1990) An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralysed with botulinum toxin. Neuroscience 35(1):85–91

    Article  CAS  PubMed  Google Scholar 

  22. Moscoso LM, Cremer H, Sanes JR (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J Neurosci 18(4):1465–1477

    CAS  PubMed  Google Scholar 

  23. Musaro A, McCullaqh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27(2):195–200

    Article  CAS  PubMed  Google Scholar 

  24. Apel PJ, Ma J, Callahan M, Northam CN, Alton TB, Sonntag WE, Li Z (2010) Effect of locally delivered IGF-1 on nerve regeneration during aging: an experimental study in rats. Muscle Nerve 41(3):335–341. doi:10.1002/mus.21485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rind HB, von Bartheld CS (2002) Target-derived cardiotrophin-1 and insulin-like growth factor-I promote neurite growth and survival of developing oculomotor neurons. Mol Cell Neurosci 19(1):58–71

    Article  CAS  PubMed  Google Scholar 

  26. Higuchi O, Yamanashi Y (2011) Molecular mechanisms underlying the formation of neuromuscular junction. Brain Nerve 63(7):649–655

    CAS  PubMed  Google Scholar 

  27. Shen J, Ma J, Lee C, Smith BP, Smith TL, Tan KH, Koman LA (2006) How muscles recover from paresis and atrophy after intramuscular injection of botulinum toxin A: study in juvenile rats. J Orthop Res 24(5):1128–1135

    Article  CAS  PubMed  Google Scholar 

  28. Boyle MH, McGwin G Jr, Flanagan CE, Vicinanzo MG, Long JA (2009) High versus low concentration botulinum toxin A for benign essential blepharospasm: does dilution make a difference? Ophthal Plast Reconstr Surg 25(2):81–84. doi:10.1097/IOP.0b013e31819946c4

    Article  PubMed  Google Scholar 

  29. Hu GC, Chuang YC, Liu JP, Chien KL, Chen YM, Chen YF (2009) Botulinum toxin (Dysport) treatment of the spastic gastrocnemius muscle in children with cerebral palsy: a randomized trial comparing two injection volumes. Clin Rehabil 23(1):64–71. doi:10.1177/0269215508097861

    Article  PubMed  Google Scholar 

  30. Dressler D (2008) Clinical relevance of botulinum toxin antibodies. Nervenarzt 79(Suppl 1):36–40

    PubMed  Google Scholar 

  31. Rha DW, Yang EJ, Chung HI, Kim HB, Park CI, Park ES (2008) Is electrical stimulation beneficial for improving the paralytic effect of botulinum toxin type A in children with spastic diplegic cerebral palsy? Yonsei Med J 49(4):545–552. doi:10.3349/ymj.2008.49.4.545

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Project was supported by research Grants including the Natural Science Foundation of China (81000481), the Shanghai Rising-Star Program (10QA1407500), and the Shanghai Health Bureau of Scientific Research Plan (2009Y070).

Conflict of interest

The authors declare that there is no financial or other conflict of interest in relation to this research and its publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Nie or Lingjing Jin.

Additional information

Y. Guo and L. Pan authors have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Pan, L., Liu, W. et al. Polyclonal neural cell adhesion molecule antibody prolongs the effective duration time of botulinum toxin in decreasing muscle strength. Neurol Sci 36, 2019–2025 (2015). https://doi.org/10.1007/s10072-015-2291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2291-1

Keywords

Navigation