Skip to main content
Log in

Expression and clinical significance of non-phagocytic cell oxidase 2 and 4 after human traumatic brain injury

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The goal of this study was to examine NOX2 and NOX4 expression in clinical samples of patients with traumatic brain injury (TBI), and to explore the correlation of NOX2 and NOX4 expression with the severity of injury, duration of injury, and prognosis. Brain samples of 20 TBI patients within 1 cm of the contusion site were collected and grouped based on duration of injury, Glasgow Coma Scale (GCS) and Glasgow Outcome Scale (GOS), and immunofluorescence staining were performed to examine the expression levels of NOX2 and NOX4 in the neurons and astrocytes. We found that the expression level of NOX2 in neurons and positive rate of NOX2 expression in astrocytes peaked at 12–24 and 6–12 h after injury, respectively. The expression level of NOX4 in neurons peaked at 24–48 h, and the positive rate of NOX4 expression gradually increased with prolonged injury. We also found that the higher the GCS score, the lower the expression levels of NOX2 and NOX4 in neurons was, while higher the GCS score, the lower the positive rate of NOX4 expression in astrocytes was and the higher the GOS grade, the lower the positive rate of expression in astrocytes was. In conclusion, NOX2 and NOX4 expressions significantly increase at an early stage after TBI, and abnormal expressions of NOX2 and NOX4 are correlated to patient prognosis to certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOX:

Non-phagocytic cell oxidase

ROS:

Reactive oxygen species

OS:

Oxidative stress

NOX1:

Non-phagocytic cell oxidase1

NOX2:

Non-phagocytic cell oxidase2

NOX3:

Non-phagocytic cell oxidase3

NOX4:

Non-phagocytic cell oxidase4

NOX5:

Non-phagocytic cell oxidase5

DUOX1:

Dual-function oxidase1

DUOX2:

Dual-function oxidase2

GCS:

Glasgow coma scale

GOS:

Glasgow outcome scale

References

  1. Bruns J Jr, Hauser WA (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10):2–10

    Article  PubMed  Google Scholar 

  2. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786

    Article  PubMed Central  PubMed  Google Scholar 

  3. Corrigan JD, Selassie AW, Orman JA (2010) The epidemiology of traumatic brain injury. J Head Trauma Rehabil 25:72–80

    Article  PubMed  Google Scholar 

  4. Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH (2011) Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl 111:63–69

    Article  PubMed Central  PubMed  Google Scholar 

  5. Everse J, Coates PW (2009) Neurodegeneration and peroxidases. Neurobiol Aging 30:1011–1025

    Article  CAS  PubMed  Google Scholar 

  6. Kamsler A, Segal M (2004) Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol 29:167–178

    Article  CAS  PubMed  Google Scholar 

  7. Babior BM (1995) The respiratory burst oxidase. Curr Opin Hematol 2:55–60

    Article  CAS  PubMed  Google Scholar 

  8. Lambeth JD, Cheng G, Arnold RS, Edens WA (2000) Novel homologs of gp91phox. Trends Biochem Sci 25:459–461

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Ami R, Barshtein G, Mardi T, Deutch V, Elkayam O, Yedgar S, Berliner S (2003) A synergistic effect of albumin and fibrinogen on immunoglobulin-induced red blood cell aggregation. Am J Physiol Heart Circ Physiol 285:H2663–H2669

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29:97–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    Article  CAS  PubMed  Google Scholar 

  14. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775

    Article  CAS  PubMed  Google Scholar 

  15. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E, Herrmann F, Hadengue A, Krause KH (2005) Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol 207:164–176

    Article  CAS  PubMed  Google Scholar 

  16. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    Article  CAS  PubMed  Google Scholar 

  17. Cooney SJ, Bermudez-Sabogal SL, Byrnes KR (2013) Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation 10:155

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41

    Article  PubMed Central  PubMed  Google Scholar 

  19. El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R et al (2005) Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288:G933–G942

    Article  PubMed  Google Scholar 

  20. Fulton DJ (2009) Nox5 and the regulation of cellular function. Antioxid Redox Signal 11:2443–2452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW (2012) Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res 1481:49–58

    Article  CAS  PubMed  Google Scholar 

  22. Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW (2012) Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS ONE 7:e34504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Song SX, Gao JL, Wang KJ, Li R, Tian YX, Wei JQ, Cui JZ (2013) Attenuation of brain edema and spatial learning defi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 7:327–331

    CAS  PubMed  Google Scholar 

  24. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  CAS  PubMed  Google Scholar 

  25. Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J (2004) Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 286:H2442–H2451

    Article  CAS  PubMed  Google Scholar 

  26. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, Iadecola C (2009) NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29:2545–2552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy AG (2007) Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 28:988–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S (2011) Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats. Brain Res 1372:92–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81171105, 81271300, and 81371279), Jiangsu Province’s Outstanding Medical Academic Leader program (No. LJ201139), the National Key Technology R&D program for the 12th Five-year plan of the People’s Republic of China (2011BAI08B05, 2011BAI08B06, and 2014BAZ04810), and grants from Scientific Department of Jiangsu Province (No. BL2014045) and Suzhou Government (No. LCZX201301, SZS201413 and SYS201332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuming Shen or Gang Chen.

Additional information

Z. Li, F. Tian and Z. Shao equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tian, F., Shao, Z. et al. Expression and clinical significance of non-phagocytic cell oxidase 2 and 4 after human traumatic brain injury. Neurol Sci 36, 61–71 (2015). https://doi.org/10.1007/s10072-014-1909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1909-z

Keywords

Navigation