Skip to main content
Log in

Increased axonal expression of nectin-1 in multiple sclerosis plaques

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Nectin-1 is a cell adhesion molecule that plays a role in interneuronal synapse formation, in axonal guidance during development and possibly in neuron-glia interactions. To better understand axonal changes in MS, nectin-1 expression was determined by immunohistochemistry in normal adult human cerebral white matter (n = 4) and in six MS plaques (three active and three inactive). The intensity of axonal nectin-1 expression was scored on a scale of 0 to 4+. In normal adult cerebral white matter, axons showed weak nectin-1 expression with a score of 1.25 ± 0.50. Axonal nectin-1 expression was significantly stronger within both active (score = 3.33 ± 0.289, p = 0.001) and inactive (score = 2.16 ± 0.29, p = 0.038) MS plaques than in normal white matter. Axons in white matter adjacent to MS plaques showed nectin-1 expression (score = 1.5 ± 0.50) that was not statistically different from normal controls (p = 0.542). These findings raise the possibility that increased expression of nectin-1 in MS lesions plays a role in the pathogenesis of MS through participation in axonal responses to injury and mediation of altered neuron-glia interactions relevant to myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lassmann H (2003) Axonal injury in multiple sclerosis. J Neurol Neurosurg Psychiatry 74(6):695–697

    Article  PubMed  CAS  Google Scholar 

  2. Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13(2):45–56

    Article  PubMed  Google Scholar 

  3. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338(5):278–285

    Article  PubMed  CAS  Google Scholar 

  4. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183

    Article  PubMed  Google Scholar 

  5. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125(Pt 10):2202–2212

    Article  PubMed  Google Scholar 

  6. Petratos S, Azari MF, Ozturk E, Papadopoulos R, Bernard CC (2010) Novel therapeutic targets for axonal degeneration in multiple sclerosis. J Neuropathol Exp Neurol 69(4):323–334

    Article  PubMed  Google Scholar 

  7. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48(6):893–901

    Article  PubMed  CAS  Google Scholar 

  8. Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28(4–5):383–395

    Article  PubMed  CAS  Google Scholar 

  9. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis: results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477

    Article  PubMed  Google Scholar 

  10. Perry VH, Anthony DC (1999) Axon damage and repair in multiple sclerosis. Philos Trans R Soc Lond B Biol Sci 354(1390):1641–1647

    Article  PubMed  CAS  Google Scholar 

  11. Raine CS, Cross AH (1989) Axonal dystrophy as a consequence of long-term demyelination. Lab Invest 60(5):714–725

    PubMed  CAS  Google Scholar 

  12. Dahl D, Perides G, Bignami A (1989) Axonal regeneration in old multiple sclerosis plaques. Immunohistochemical study with monoclonal antibodies to phosphorylated and non-phosphorylated neurofilament proteins. Acta Neuropathol 79(2):154–159

    Article  PubMed  CAS  Google Scholar 

  13. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116(Pt 1):17–27

    Article  PubMed  CAS  Google Scholar 

  14. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W (2003) Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94(8):655–667

    Article  PubMed  CAS  Google Scholar 

  15. Ogita H, Rikitake Y, Miyoshi J, Takai Y (2010) Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. Proc Jpn Acad Ser B Phys Biol Sci 86(6):621–629

    Article  PubMed  CAS  Google Scholar 

  16. Guzman G, Oh S, Shukla D, Engelhard HH, Valyi-Nagy T (2006) Expression of entry receptor nectin-1 of herpes simplex virus 1 and/or herpes simplex virus 2 in normal and neoplastic human nervous system tissues. Acta Virol 50(1):59–66

    PubMed  CAS  Google Scholar 

  17. Guzman G, Oh S, Shukla D, Valyi-Nagy T (2006) Nectin-1 expression in the normal and neoplastic human uterine cervix. Arch Pathol Lab Med 130(8):1193–1195

    PubMed  CAS  Google Scholar 

  18. Horvath S, Prandovszky E, Kis Z, Krummenacher C, Eisenberg RJ, Cohen GH, Janka Z, Toldi J (2006) Spatiotemporal changes of the herpes simplex virus entry receptor nectin-1 in murine brain during postnatal development. J Neurovirol 12(3):161–170

    Article  PubMed  CAS  Google Scholar 

  19. Prandovszky E, Horvath S, Gellert L, Kovacs SK, Janka Z, Toldi J, Shukla D, Valyi-Nagy T (2008) Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. J Neurovirol 14(2):164–172

    Article  PubMed  CAS  Google Scholar 

  20. Valyi-Nagy T, Sheth V, Clement C, Tiwari V, Scanlan P, Kavouras JH, Leach L, Guzman-Hartman G, Dermody TS, Shukla D (2004) Herpes simplex virus entry receptor nectin-1 is widely expressed in the murine eye. Curr Eye Res 29(4–5):303–309

    Article  PubMed  CAS  Google Scholar 

  21. Okabe N, Shimizu K, Ozaki-Kuroda K, Nakanishi H, Morimoto K, Takeuchi M, Katsumaru H, Murakami F, Takai Y (2004) Contacts between the commissural axons and the floor plate cells are mediated by nectins. Dev Biol. 273(2):244–256

    Article  PubMed  CAS  Google Scholar 

  22. Mizoguchi A, Nakanishi H, Kimura K, Matsubara K, Ozaki-Kuroda K, Katata T, Honda T, Kiyohara Y, Heo K, Higashi M, Tsutsumi T, Sonoda S, Ide C, Takai Y (2002) Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 156(3):555–565

    Article  PubMed  CAS  Google Scholar 

  23. Takai Y, Shimizu K, Ohtsuka T (2003) The roles of cadherins and nectins in interneuronal synapse formation. Curr Opin Neurobiol 13(5):520–526

    Article  PubMed  CAS  Google Scholar 

  24. Zelano J, Wallquist W, Hailer NP, Cullheim S (2006) Expression of nectin-1, nectin-3, N-cadherin, and NCAM in spinal motoneurons after sciatic nerve transection. Exp Neurol 201(2):461–469

    Article  PubMed  CAS  Google Scholar 

  25. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707

    Article  PubMed  CAS  Google Scholar 

  26. Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A, Takai Y (2005) Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell–cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 118(Pt 6):1267–1277

    Article  PubMed  CAS  Google Scholar 

  27. Sakisaka T, Ikeda W, Ogita H, Fujita N, Takai Y (2007) The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors. Curr Opin Cell Biol 19(5):593–602

    Article  PubMed  CAS  Google Scholar 

  28. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9(8):603–615

    Article  PubMed  CAS  Google Scholar 

  29. Park J, Liu B, Chen T, Li H, Hu X, Gao J, Zhu Y, Zhu Q, Qiang B, Yuan J, Peng X, Qiu M (2008) Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 28(48):12815–12819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by fellowship grants to E.G., B.K. and A.V. by the Rosztoczy Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Valyi-Nagy.

Additional information

K. J. Castellanos and E. Gagyi contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, K.J., Gagyi, E., Kormos, B. et al. Increased axonal expression of nectin-1 in multiple sclerosis plaques. Neurol Sci 34, 465–469 (2013). https://doi.org/10.1007/s10072-012-1026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1026-9

Keywords

Navigation