Skip to main content

Advertisement

Log in

Ocimum sanctum attenuates oxidative damage and neurological deficits following focal cerebral ischemia/reperfusion injury in rats

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Stroke is an enormous public health problem with an imperative need for more effective therapy. Free radicals have been reported to play a role in the expansion of ischemic brain lesions, and the effect of free radical scavengers is still under debate. The present study investigated the neuroprotective effect of Ocimum sanctum (OS) to reduce brain injury after middle cerebral artery occlusion (MCAO). Male Wistar rats were subjected to MCAO for 2 h and reperfused for 22 h. The administration of OS (200 mg/kg bwt., orally) once daily for 15 days before MCAO showed marked reduction in infarct size, reduced the neurological deficits, and suppressed neuronal loss in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with OS. Conversely, the elevated level of thiobarbituric acid-reactive substances (TBARS) in MCAO group was attenuated significantly in OS-pretreated group when compared with MCAO group. Consequently, OS pretreatment may reduce the deterioration caused by free radicals, and thus may used to prevent subsequent behavioral, biochemical and histopathological changes that transpire during cerebral ischemia. This finding reflects that supplementation of OS intuitively by reasonable and understandable treatment effectively ameliorates the cerebral ischemia-induced oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Das RR, Seshadri S, Beiser AS, Kelly-Hayes M, Au R, Himali JJ, Kase CS, Benjamin EJ, Polak JF, O’Donnell CJ, Yoshita M, D’Agostino RB, DeCarli C, Wolf PA (2008) Prevalance and correlates of silent cerebral infarcts in the framingham offspring study. Stroke 39:2929–2935

    Article  PubMed  Google Scholar 

  2. Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    Article  PubMed  CAS  Google Scholar 

  3. Kaushal V, Lyanne C (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    Article  PubMed  CAS  Google Scholar 

  4. Sardesai VM (1995) Role of antioxidants in health maintenance. Nutr Clin Pract 10:19–25

    Article  PubMed  CAS  Google Scholar 

  5. Faraci FM (2005) Oxidative stress: the curse that underlies cerebral vascular dysfunction. Stroke 36:186–188

    Google Scholar 

  6. Yousuf S, Salim S, Ahmad M, Ahmad AS, Ansari MA, Islam F (2005) Protective effect of khamira abresham uood mastagiwala against free radical induced damage in focal cerebral ischemia. J Ethnopharmacol 99:179–184

    Article  PubMed  Google Scholar 

  7. Khan MM, Ishrat T, Ahmad A, Hoda MN, Khan MB, Khuwaja G, Srivastava P, Raza SS, Islam F, Ahmad SS (2010) Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact 183:255–263

    Article  PubMed  CAS  Google Scholar 

  8. Sharmila Banu G, Kumar G, Murugesan AG (2009) Effects of leaves extract of Ocimum sanctum L. on arsenic-induced toxicity in Wistar albino rats. Food Chem Toxicol 472:490–495

    Google Scholar 

  9. Sen P, Maiti PC, Puri S, Andulov NA, Valdman AV (1992) Mechanism of antistress activity of Ocimum sanctum linn, eugenol, tinospora malabarica in experimental animals. Indian J Exp Biol 30:592–596

    PubMed  CAS  Google Scholar 

  10. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto M, Tamura A, Kirino T, Shimizu M, Sano K (1988) Behavioural changes after focal cerebral ischemia by left middle cerebral artery occlusion in rats. Brain Res 452:323–328

    Article  PubMed  CAS  Google Scholar 

  12. Huang J, Philbert MA (1996) Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Res 711:184–192

    Article  PubMed  CAS  Google Scholar 

  13. Utley HC, Bernhein F, Hochslein P (1967) Effects of sulfhydryl reagent on peroxidation in microsomes. Arch Biochem Biophys 260:521–531

    Google Scholar 

  14. Islam F, Zia S, Sayeed I, Zafar KS, Ahmad AS (2002) Selenium induced alteration on lipids, lipid peroxidation, and thiol group in circadian rhythm centers of rat. Biol Trace Elem Res 90:1–12

    Article  Google Scholar 

  15. Jollow DJ, Mitchell JR, Zampaghone N, Gillete JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic intermediate. Pharmacol 11:161–169

    Article  Google Scholar 

  16. Carlberg I, Mannerviek B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  17. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidneys: Possible implication in analgesic neuropathy. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  18. Habig WH, Pabst M, Jakoby WB (1986) Glutathione S-Transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:130–7139

    Google Scholar 

  19. Stevens MJ, Obrosova I, Cao X, Van Huysen CV, Greene DA (2000) Effect of DL-alpha-lipidic acid on peripheral nerve conduction, blood flow, energy metabolism and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015

    Article  PubMed  CAS  Google Scholar 

  20. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC hand book of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  21. Nakayama H, Ginsberg MD, Dietrich WD (1988) (S)-Emopamil, 539 a novel calcium channel blocker and serotonin S2 antagonist, 540 markedly reduces infarct size following middle cerebral artery 541 occlusion in rat. Neurology 38:1667–1673

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement, with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Thiyagrajan M, Sharma S (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia. Life Sci 74:969–985

    Article  Google Scholar 

  24. Hussain HEMA, Jamil K, Rao M (2001) Hypoglycaemic, Hypolipidemic and antioxidant properties of tulsi (Ocimum sanctum linn) on streptozotocin induced diabetes in rats. Indian J Clin Biochem 16:190–194

    Article  PubMed  CAS  Google Scholar 

  25. Schwarting RK, Steiner H, Huston JP (1991) Asymmetries in thigmotactic scanning: evidence for a role of dopaminergic mechanisms. Psychopharmacology 103:19–27

    Article  PubMed  CAS  Google Scholar 

  26. Blankenship D, Niemi J, Hilow E, Karl M, Sundararajan S (2011) Oral pioglitazone reduces infarction volume and improves neurologic function following MCAO in rats. Adv Exp Med Biol 915:157–162

    Article  Google Scholar 

  27. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  PubMed  CAS  Google Scholar 

  28. Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martínez G, León OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241

    Article  PubMed  CAS  Google Scholar 

  29. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  30. Imam SZ, Ali SF (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Res 855:186–191

    Article  PubMed  CAS  Google Scholar 

  31. Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B (1997) Glutathione transferases catalyse the detoxication of oxidized metabolite (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324:5–8

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Departments of Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy (AYUSH), Ministry of Health and Family Welfare, Government of India, New Delhi, for financial assistance. The authors wish to thank Mr. Dharamvir Singh for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A., Khan, M.M., Raza, S.S. et al. Ocimum sanctum attenuates oxidative damage and neurological deficits following focal cerebral ischemia/reperfusion injury in rats. Neurol Sci 33, 1239–1247 (2012). https://doi.org/10.1007/s10072-012-0940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-0940-1

Keywords

Navigation