Skip to main content
Log in

Production of fungal lipases using wheat bran and soybean bran and incorporation of sugarcane bagasse as a co-substrate in solid-state fermentation

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal strains were screened for lipase producing activities and 10 strains were classified as good producers. Aspergillus sp., Fusarium sp., and Penicillium sp. exhibited the highest activities when fermented in wheat bran (WB) and soybean bran (SB). No fungal growth was observed using sugarcane bagasse (CB). An experimental design was applied to incorporate CB into the fermentation process for lipase production by Aspergillus sp. and Penicillium sp., and to evaluate the best moisture content for the substrate. Strains studied achieved maximum lipase activities with 25% CB combined with 75% WB or SB at 40% moisture content. The highest lipase activities were observed for WB and SB, and for SB combined with CB using Aspergillus sp. Fermentation of 96 h was the optimum period for enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salihu A, Alama MZ, Karim MIA, Salleh HM. Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recy. 58: 36–44 (2012).

    Article  Google Scholar 

  2. Barros M, Fleuri LF, Macedo GA. Seed lipases: Sources, applications and properties — a review. Braz. J. Chem. Eng. 27: 15–29 (2010)

    Article  CAS  Google Scholar 

  3. Stamenkovic OS, Velickovic AV, Veljkovic BV. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 90: 3141–3155 (2011)

    Article  CAS  Google Scholar 

  4. Hasheminejad M, Tabatabaei M, Mansourpanah Y, Khatami Far M, Javani A. Upstream and downstream strategies to economize biodiesel production. Bioresource Technol. 102: 461–468 (2011)

    Article  CAS  Google Scholar 

  5. Jin Z, Han S-Y, Zhang Li, Zheng S-P, Wang Y, Lin Y. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresource Technol. 130: 102–109 (2013)

    Article  CAS  Google Scholar 

  6. Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92: 405–416 (2001)

    CAS  Google Scholar 

  7. Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 49: 388–394 (2010)

    Article  CAS  Google Scholar 

  8. Soccol CR, Vandenberghe LPS, Pedroni AB, Karp MSG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bom EPS, Moraes LMP, Araújo JA, Torres FAG. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technol. 101: 4820–4825 (2010)

    Article  CAS  Google Scholar 

  9. Martín C, Klinke HB, Thonsen AB. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Tech. 40: 426–432 (2007)

    Article  Google Scholar 

  10. Chandra M, Kalra A, Sharma PK, Kumar H, Sangwan RS. Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass Bioenerg. 34: 805–811 (2010)

    Article  CAS  Google Scholar 

  11. Soccol CR, Vandenberghe LPS. Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J. 13: 205–218 (2003)

    Article  CAS  Google Scholar 

  12. Karp SG, Woiciechowski1 AL, Soccol VT, Soccol CR. Pretreatment strategies for delignification of sugarcane bagasse: A review. Braz. Arch. Biol.Techn. 56: 679–689 (2013)

    Article  CAS  Google Scholar 

  13. Dheeman DS, Antony-Babu S, Frías J, Henehan GTM. Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39 (DSM 23773). J. Mol. Catal. B-Enzym. 72: 256–262 (2011)

    Article  CAS  Google Scholar 

  14. Barros Neto B, Scarminio IS, Bruns RE. Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria, v. 1, 1a ed. Coleção Livros-Textos, Edunicamp, Campinas, Brazil (2001)

    Google Scholar 

  15. Lopes DB, Fraga, LP, Fleuri, LF, Macedo GA. Lipase and esteraseto what extent can this classification be applied accurately? Food Sci. Technol. 31: 608–613 (2011)

    Google Scholar 

  16. StatSoft Inc. Electronic Statistics Textbook. Available from: http://www.statsoft.com/textbook. Accessed 2013.

    Google Scholar 

  17. Papagora C, Roukas T, Kotzekidou P. Optimization of extracellular lipase production by Debaryomyces hansenii isolates from drysalted olives using response surface methodology. Food Bioprod. Process. 91: 413–420 (2013)

    Article  CAS  Google Scholar 

  18. Goldbeck R, Maugeri Filho F. Screening, characterization and biocatalytic capacity of lipases producing wild yeast from Brazil biomes. Food Sci. Biotechnol. 22: 79–87 (2013)

    Article  CAS  Google Scholar 

  19. Maldonado RR, Panciera AL, Macedo GA, Mazutti A, Maugeri F, Rodrigues MI. Improvement of lipase production from Geotrichum sp. in shaken flasks. Chem. Ind. Chem. Eng. Q. 18: 459–464 (2012)

    Article  CAS  Google Scholar 

  20. Roveda M, Hemkemeier M, Colla LM. Evaluation of lipase production using different strains of microorganisms isolated from dairy effluent through submerged fermentation. Food Sci. Technol. 30: 126–131 (2010)

    Google Scholar 

  21. Teng Y, Xu Y. Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technol. 99: 3900–3907 (2008)

    Article  CAS  Google Scholar 

  22. Miranda OA, Salgueiro AA, Pimentel MCB, Lia Filho JL, Melo EHM, Duran N. Lipase production by a Brazilian strain of Penicillium citrinum using an industrial residue. Bioresource Technol. 69: 145–147 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Francisco Fleuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleuri, L.F., de Oliveira, M.C., de Lara Campos Arcuri, M. et al. Production of fungal lipases using wheat bran and soybean bran and incorporation of sugarcane bagasse as a co-substrate in solid-state fermentation. Food Sci Biotechnol 23, 1199–1205 (2014). https://doi.org/10.1007/s10068-014-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0164-7

Keywords

Navigation