Skip to main content
Log in

Turmeric (Curcuma longa) whole powder reduces accumulation of visceral fat mass and increases hepatic oxidative stress in rats fed a high-fat diet

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Turmeric powder (TP) containing approximately 5.15% curcumin was evaluated for reduction of development of high-fat diet-induced obesity. Rats were fed a 30% fat diet containing 5, 10, and 20 g of TP/100 g of diet (TP-5, TP-10, and TP-20 groups) for 30 days. Body weight gain, energy intake, and the visceral fat mass for the TP-10 and TP-20 groups were lower than for the control group. Serum triglyceride and hepatic total lipid levels for the TP-10 and TP-20 groups were lower than for the control group. The hepatic glutathione concentration and the glutathione-S-transferase activity for all TP groups, and the thiobarbituric acid reactive substances level for the TP-20 group, were higher than for the control group. A high dose of turmeric powder apparently reduces development of high-fat diet-induced obesity, but also causes the adverse effect of increasing oxidative stress in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ezzati M, Martin H, Skjold S, SV, Murray CJL. Trends in national and state-level obesity in the USA after correction for self-report bias: Analysis of health surveys. J. R. Soc. Med. 99: 250–257 (2006)

    Article  Google Scholar 

  2. Haslam DW, James WP. Obesity. Lancet 366: 1197–1209 (2005)

    Article  Google Scholar 

  3. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881–887 (2000)

    Article  Google Scholar 

  4. Vega GL, Adams-Huet B, Peshock R, Willett D, Shah B, Grundy SM. Influence of body fat content and distribution on variation in metabolic risk. J. Clin. Endocrinol. Metab. 91: 4459–4466 (2006)

    Article  CAS  Google Scholar 

  5. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 57: 1–7 (1991)

    Article  CAS  Google Scholar 

  6. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 87: 44–53 (2004)

    CAS  Google Scholar 

  7. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res. 52: 995–1004 (2008)

    Article  CAS  Google Scholar 

  8. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149: 3549–3558 (2008)

    Article  CAS  Google Scholar 

  9. Sun S, Ji Y, Kersten S, Qi L. Mechanisms of inflammatory responses in obese adipose tissue. Annu. Rev. Nutr. 32: 261–286 (2012)

    Article  CAS  Google Scholar 

  10. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat dietinduced lipid accumulation in rat liver and epididymal adipose tissue. J. Nutr. 131: 2932–2935 (2001)

    CAS  Google Scholar 

  11. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 139: 919–925 (2009)

    Article  CAS  Google Scholar 

  12. Jayaprakasha CK, Rao JJM, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agr. Food Chem. 50: 3668–3672 (2002)

    Article  CAS  Google Scholar 

  13. Joint FAO/ WHO Expert Committee on Food Additives. Specifications for the identity and purity of some extractions solvents and certain other substances, FAO Nutrition Meeting, Report Series No. 48B, WHO/Food Add/70.40. FAO and WHO, Geneva, Switzerland (1971)

    Google Scholar 

  14. Ghibaudi L, Cook J, Farley C, van Heek M, Hwa JJ. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. Obes. Res. 10: 956–963 (2002)

    Article  CAS  Google Scholar 

  15. Pongchaidecha A, Lailerd N, Boonprasert W, Chattipakorn N. Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats. Nutrition 25: 870–878 (2009)

    Article  CAS  Google Scholar 

  16. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J. Chromatogr. B Technol. Biomed. Life Sci. 853: 183–189 (2007)

    CAS  Google Scholar 

  17. AOAC. Official Method of Analysis of AOAC Intl. 15th ed. Method 920.87, 920.85, 925.10, 923.03. Association of Official Analytical Communities, Arlington, VA, USA (1990)

    Google Scholar 

  18. National Research Council. Guide for the care and use of laboratory animals. Available from: http://newton.nap.edu/html/labrats. Accessed Dec. 27, 2011.

  19. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509 (1957)

    CAS  Google Scholar 

  20. Cohn VH, Lyle JA. Fluorometric assay for glutathione. Anal. Biochem. 14: 434–440 (1966)

    Article  CAS  Google Scholar 

  21. Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases. J. Biol. Chem. 249: 7130–7139 (1974)

    CAS  Google Scholar 

  22. Lawrence R, Burk R. Glutathione peroxidase activity in seleniumdeficient rat liver. Biochem. Biophys. Res. Commun. 7: 952–958 (1976)

    Article  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxide in animal tissues by thiobarbutric reactions. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  25. Delzenne NM, Cani PD. A place for dietary fiber in the management of the metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 8: 636–640 (2005)

    Article  Google Scholar 

  26. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. Clin. Invest. 101: 515–520 (1998)

    Article  CAS  Google Scholar 

  27. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, Shin SK, Seong CN, Lee MK. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metab. Clin. Exp. 57: 1576–1583 (2008)

    Article  CAS  Google Scholar 

  28. Gajda AM, Pellizzon MA, Ricci MR, Ulman EA. Diet-induced metabolic syndrome in rodent models. Available from: http://www.researchdiets.com/OSD/DIDM/metabolic.htm. Accessed Apr. 21, 2013.

  29. Tian WX. Inhibition of fatty acid synthase by polyphenols. Curr. Med. Chem. 13: 967–977 (2006)

    Article  CAS  Google Scholar 

  30. Bruck R, Shapiro H. Therapeutic potential of curcumin in nonalcoholic steatohepatitis. Nutr. Res. Rev. 18: 212–221 (2005)

    Article  Google Scholar 

  31. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, Schick F, Häring HU, Stumvoll M. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes. Res. 11: 368–372 (2003)

    Article  CAS  Google Scholar 

  32. Oetari S, Sudibyo M, Commandeur JN, Samhoedi R, Vermeulen NP. Effects of curcumin on cytochrome P450 and glutathione Stransferase activities in rat liver. Biochem. Pharmacol. 51: 39–45 (1996)

    Article  CAS  Google Scholar 

  33. Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol. Toxicol. 92: 33–38 (2003)

    Article  CAS  Google Scholar 

  34. Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S. Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int. J. Biochem. Cell Biol. 30: 445–456 (1998)

    Article  CAS  Google Scholar 

  35. Kempaiah RK, Srinivasan K. Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats. J. Nutr. Biochem. 17: 471–478 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Ho Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Kim, AY., Pyun, CW. et al. Turmeric (Curcuma longa) whole powder reduces accumulation of visceral fat mass and increases hepatic oxidative stress in rats fed a high-fat diet. Food Sci Biotechnol 23, 261–267 (2014). https://doi.org/10.1007/s10068-014-0036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0036-1

Keywords

Navigation