Skip to main content
Log in

Response surface optimization of β-glucan extraction from cauliflower mushrooms (Sparassis crispa)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The extraction procedures for β-glucans from cauliflower mushrooms (Sparassis crispa) were optimized by response surface methodology. Experimental design was used to investigate the effect of 3 extraction parameters (pH, extraction time, and ratio of water to raw material) on β-glucan content. The parameter ranges investigated were 6–10 for extraction pH (X1), 5-15 h for extraction time (X2), and 10–30 for water to raw material ratio (X3). The experimental results were in good agreement with a polynomial regression model by a multiple regression analysis (R2=0.95, p=0.0074) for β-glucan content extracted from cauliflower mushrooms. The optimal conditions for β-glucan extraction from cauliflower mushrooms were determined as extraction pH of 6.05, extraction time of 8 h 55 min, and ratio of water to raw material of 19.74, showing 60.76% of the predicted content of β-glucan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23: 866–872 (2000)

    Article  CAS  Google Scholar 

  2. Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Effect of SCG, 1,3-β-d-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol. Pharm. Bull. 25: 931–939 (2002)

    Article  CAS  Google Scholar 

  3. Kawagishi H, Hayashi K, Tokuyama S, Hashimoto N, Kimura T, Dombo M. Novel bioactive compound from the Sparassis crispa mushroom. Biosci. Biotech. Bioch. 71: 1804–1806 (2007)

    Article  CAS  Google Scholar 

  4. Yamamoto K, Kimura T, Sugitachi A, Matsura N. Anti-angiogenic and anti-metastatic effects of β-1,3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 32: 259–263 (2009)

    Article  CAS  Google Scholar 

  5. Kim SI, Park HG, Cho GH, Ko IS, Kim HW. Cooperative effect of the lipopolysaccharide and culinary-medicinal cauliflower mushrrom Sparassis crispa (Wulf.) Fr. (Aphyllophoromycetideae)-derived β-glucan on inflammatory cytokine secretion by the murine macrophage cell line. Int. J. Med. Mushrooms 11: 9–20 (2009)

    Article  CAS  Google Scholar 

  6. Fullerton SA, Samadi AA, Tortorelis DG, Choudhury MS, Mallouh C, Tazaki H, Konno S. Induction of apoptosis in human prostatic cancer cells with β-glucan (maitake mushroom polysaccharide). Mol. Urol. 4: 7–13 (2000)

    CAS  Google Scholar 

  7. Kidd PM. The use of mushroom glucans and proteoglycans in cancer treatment. Altern. Med. Rev. 5: 4–27 (2000)

    CAS  Google Scholar 

  8. Tada R, Harada T, Nagi-Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. NMR characterization of the structure of a β-(1→3)-d-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohyd. Res. 342: 2611–2618 (2007)

    Article  CAS  Google Scholar 

  9. Blumenthal HJ. Reserve carbohydrates in fungi. Vol. 2, pp. 292–307. In: The Filamentous Fungi. Smith JE, Berry DR (eds). Edward Arnold Publishers Ltd., London, UK (1976)

    Google Scholar 

  10. Wessels JGH, Mol PC, Sietsma JH, Vermeulen CA. Wall structure, wall growth, and fungal cell morphogenesis. pp. 81–95. In: Biochemistry of Cell Walls and Membranes in Fungi. Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds). Springer-Verlag, Berlin, Germany (1990)

    Chapter  Google Scholar 

  11. Yadomae T. Structure and biological activities of fungal β-1,3-glucans. Yakuga. Zasshi 120: 413–431 (2000)

    CAS  Google Scholar 

  12. Wang Y, Cheng Z, Mao J, Fan M, Wu X. Optimization of ultrasonicassisted extraction process of Poria cocos polysaccharides by response surface methodology. Carbohyd. Polym. 77: 713–717 (2009)

    Article  CAS  Google Scholar 

  13. Dong CH, Xiea XQ, Wang XL, Zhana Y, Yao YJ. Optimization of extraction techniques for the polysaccharides from Cordyceps sinensis. Zhong Cao Yao 33: 1086–1087 (2002)

    Google Scholar 

  14. Dong CH, Xiea XQ, Wang XL, Zhana Y, Yao YJ. Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Process. 87: 139–144 (2008)

    Article  Google Scholar 

  15. XuJie H, Wei C. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohyd. Polym. 72: 67–74 (2008)

    Article  Google Scholar 

  16. Liu J, Miao S, Wen X, Sun Y. Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM). Carbohyd. Polym. 78: 704–709 (2009)

    Article  CAS  Google Scholar 

  17. Hassid WZ, Joslyn MA, McCready RM. The molecular constitution of an insoluble polysaccharide from yeast, Saccharomyces cerevisiae. J. Am. Chem. Soc. 63: 295–298 (1941)

    Article  CAS  Google Scholar 

  18. Di Luzio NR, Williams DL, McNamee RB, Edwards BF, Kitahama A. Comparative tumor inhibotory and anti-bacterial activity of soluble and particulate glucan. Int. J. Cancer 24: 773–779 (1979)

    Article  Google Scholar 

  19. Williams DL, Pretus HA, McNamee RB, Jones EL, Ensley HE, Browder IW, Di Luzio NR. Evaluation of a water soluble glucan sulfate derived from Saccharomyces cerevisiae. Immunopharmacology 22: 139–156 (1991)

    Article  CAS  Google Scholar 

  20. Williams DL, McNamee RB, Jones EL, Pretus HA, Ensley HE, Browder IW, Di Luzio NR. A method for the solubilization of a (1→3)-β-d-glucan isolated from Saccharomyces cerevisiae. Carbohyd. Res. 219: 203–213 (1991)

    Article  CAS  Google Scholar 

  21. Miiller A, Ensley H, Pretus H, McNamee R, Jones E, McLaughlin E, Chandley W, Browder W, Lowman D, Williams D. The application of various protic acids in the extraction of (1→3)-β-d-glucan from Saccharomyces cerevisiae. Carbohyd. Res. 299: 203–208 (1997)

    Article  Google Scholar 

  22. Magnani M, Calliari CM, de Macedo FC, Mori MP, de Syllos Cólus IM, Castro-Gomez RJH. Optimized methodology for extraction of (1→3)(1→6)-β-d-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohyd. Polym. 78: 658–665 (2009)

    Article  CAS  Google Scholar 

  23. Chakraborty I, Mondal S, Rout D, Islam SS. A water-insoluble (1→3)-β-d-glucan from the alkaline extract of an edible mushroom Termitomyces eurhizus. Carbohyd. Res. 341: 2990–2993 (2006)

    Article  CAS  Google Scholar 

  24. Asif A, Anjum FM, Zahoor T, Nawaz H, Ahmed Z. Extraction and characterization of β-d-glucan from oat for industrial utilization. Int. J. Biol. Macromol. 46: 304–309 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, I.Y., Kim, K.J., Lee, S. et al. Response surface optimization of β-glucan extraction from cauliflower mushrooms (Sparassis crispa). Food Sci Biotechnol 21, 1031–1035 (2012). https://doi.org/10.1007/s10068-012-0134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0134-x

Keywords

Navigation