Skip to main content
Log in

Protective effects of aqueous extract from Cudrania tricuspidata on oxidative stress-induced neurotoxicity

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Total phenolics and flavonols of aqueous extract from different parts of Cudrania tricuspidata (fruit, root, leaf, and stem) and neuronal cell protective effects against oxidative stress-induced cytotoxicity were investigated. The neuronal cell protective effects of aqueous extract from different parts of C. Tricuspidata was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, lactate dehydrogenase (LDH) release, and neutral red uptake assay. The overall relative neuronal cell protective effects of C. tricuspidata root by 3 assays were much higher than those of leaf, stem, and fruit. The aqueous extract of C. Tricuspidata root also showed higher total phenolics than those of different parts. Therefore, our study suggested that the aqueous extract of root has strong protective effect on oxidative stress-induced neurotoxicity which is correlated with its high level of phenolics, particularly kaempferol, quercetin, and myricetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui K, Luo X, Xu K, Ven Murthy MR. Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuro-Psychoph. 28: 771–799 (2004)

    Article  CAS  Google Scholar 

  2. Olanow CM. A radical hypothesis for neurodegeneration. Trends Neurosci. 16: 439–444 (1993)

    Article  CAS  Google Scholar 

  3. Reiter RJ. Oxidative processes and antioxidative defense mechanism in the aging brain. FASEB J. 9: 526–533 (2005)

    Google Scholar 

  4. Zhang HY, Tang XC, Huperzine B. A novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells. Neurosci. Lett. 292: 41–44 (2000)

    Article  CAS  Google Scholar 

  5. Gilgu SY, Melamed E, Offern D. Oxidative stress induced-neurodegenerative disease: The need for antioxidants that penetrate the brain barrier. Neuropharmacology 40: 959–975 (2001)

    Article  Google Scholar 

  6. Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agr. Food Chem. 50: 5294–5299 (2002)

    Article  CAS  Google Scholar 

  7. Hou WC, Lin RD, Cheng KT, Hung YT, Cho CH, Chen CH, Hwang SY, Lee MH. Free radical-scavenging activity of Taiwanese native plants. Phytomedicine 10: 170–175 (2003)

    Article  CAS  Google Scholar 

  8. Pietta PG. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035–1042 (2000)

    Article  CAS  Google Scholar 

  9. Halliwell B. Free radicals and antioxidants: A personal view. Nutr. Rev. 52: 253–265 (1994)

    Article  CAS  Google Scholar 

  10. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 76: 139–162 (1994)

    Google Scholar 

  11. Park KH, Park YD, Han JM, Im KR, Lee BW, Jeong IY, Jeong TS, Lee WS. Anti-atheroclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg. Med. Chem. Lett. 16: 5580–5583 (2006)

    Article  CAS  Google Scholar 

  12. Zou YS, Hou AJ, Zhu GF, Chen YF, Sun HD, Zhao QS. Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. 12: 1947–1953 (2004)

    Article  CAS  Google Scholar 

  13. Seo EJ, Curtis-Long MJ, Lee BW, Kim HY, Ryu YB, Jeong TS, Lee WS, Park KH. Xanthones from Cudrania tricuspidata displaying potent α-glucosidase inhibition. Bioorg. Med. Chem. Lett. 17: 6421–6424 (2007)

    Article  CAS  Google Scholar 

  14. Fukai T, Yonekawa M, Hou AJ, Momura T, Sun HD, Uno J. Antifungal agents from the roots of Cudrania cochinchinensis against Candida, Cryptococcus, and Aspergillus species. J. Nat. Prod. 66: 118–1120 (2003)

    Article  Google Scholar 

  15. Chang CH, Lin CC, Hattori M, Namba T. Effects on anti-lipid peroxidation of Cudrania cochinchinensis var. gerontogea. J. Ethnopharmacol. 44: 79–85 (1994)

    Article  CAS  Google Scholar 

  16. Lee BW, Lee JH, Gal SW, Moo YH, Park KH. Selective ABTS radical scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci. Biotech. Bioch. 70: 427–432 (2006)

    Article  CAS  Google Scholar 

  17. Lee BW, Lee JH, Lee ST, Lee HS, Lee WS, Jeong TS, Park KH. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. Lett. 15: 5548–5552 (2005)

    Article  CAS  Google Scholar 

  18. Zou YS, Hou AJ, Zhu GF. Isoprenylated xanthones and flavonoids from Cudrania tricuspidata. Chem. Biodivers. 2: 131–138 (2005)

    Article  CAS  Google Scholar 

  19. Rho YH, Yoon SH, Kim EK, Kang JY, Lee BW, Park KH, Bae YS. 2′,5,7-Trihydroxy-4′,5′-(2,2-dimethylchromeno)-8-(3-hydroxy-3-methylbutyl) flavanone purified from Cudrania tricuspidata induces apoptotic cell death of human leukemia U937 cells. Nat. Prod. Res. 21: 616–624 (2007)

    Article  CAS  Google Scholar 

  20. Heo HJ, Choi SJ, Choi SG, Shin DH, Lee JM, Lee CY. Effect of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12 cells. J. Food Sci. 73: H28–H32 (2008)

    Article  CAS  Google Scholar 

  21. Borenfreund E, Puerner J. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 24: 119–124 (1985)

    Article  CAS  Google Scholar 

  22. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321–326 (2003)

    Article  CAS  Google Scholar 

  23. Wang H, Helliwell K. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res. Int. 34: 223–227 (2001)

    Article  CAS  Google Scholar 

  24. Jang JH, Surh YJ. Protective effect of resveratrol on β amyloid-induced oxidative PC12 cell death. Free Radical Bio. Med. 34: 1100–1110 (2003)

    Article  CAS  Google Scholar 

  25. Prasad MR, Lvell MA, Yatin M, Dhillon HS, Markesbery WR. Regional membrane phospholipid alteration in Alzheimer’s disease. Neurochem. Res. 23: 81–88 (1998)

    Article  CAS  Google Scholar 

  26. Lee JH, Cho SI, Lee YS, Kim GH. Antioxidant and antiinflammatory activities of ethanol extract from leaves of Cirsium japonicum. Food Sci. Biotechnol. 17: 38–45 (2008)

    Google Scholar 

  27. Jeong GS, An RB, Pae HO, Chung HT, Yoon KH, Kang DG, Lee HS, Kim YC. Cudratricusxanthone A protects mouse hippocampal cells against glutamate-induced neurotoxicity via the induction of heme oxygenase-1. Plant Med. 74: 1368–1373 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jin Heo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, CH., Choi, G.N., Kim, J.H. et al. Protective effects of aqueous extract from Cudrania tricuspidata on oxidative stress-induced neurotoxicity. Food Sci Biotechnol 19, 1113–1117 (2010). https://doi.org/10.1007/s10068-010-0158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0158-z

Keyworlds

Navigation