Skip to main content

Advertisement

Log in

Alternative outcomes of pathogenic complex somatic structural variations in the genomes of NF1 and NF2 patients

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Multiplex ligation-dependent probe amplification (MLPA) has been widely used to identify copy-number variations (CNVs), but MLPA’s sensitivity and specificity in mosaic CNV detection are largely unknown. Here, we present two mosaic deletions identified by MLPA as NF1 deletion of exons 17–21 and NF2 deletion of exons 9–10. Through cDNA analysis, genomic breakpoint-spanning PCR and Sanger sequencing, we found however both NF1 and NF2 deletions are each composed of two consecutive deletions, which cannot be differentiated by MLPA. Importantly, these consecutive deletions are most likely originating from a single genomic rearrangement and have been preserved independently in different populations of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Smith MJ, Urquhart JE, Harkness EF, Miles EK, Bowers NL, Byers HJ, Bulman M, Gokhale C, Wallace AJ, Newman WG, Evans DG (2016) The contribution of whole gene deletions and large rearrangements to the mutation spectrum in inherited tumor predisposing syndromes. Hum Mutat 37(3):250–256. doi:10.1002/humu.22938

    Article  CAS  PubMed  Google Scholar 

  2. Carvalho CM, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. doi:10.1038/nrg.2015.25

    PubMed  PubMed Central  Google Scholar 

  3. Imbard A, Pasmant E, Sabbagh A, Luscan A, Soares M, Goussard P, Blanche H, Laurendeau I, Ferkal S, Vidaud M, Pinson S, Bellanne-Chantelot C, Vidaud D, Wolkenstein P, the members of the NFFN, Parfait B (2015) NF1 single and multi-exons copy number variations in neurofibromatosis type 1. J Hum Genet. doi:10.1038/jhg.2015.6

    PubMed  Google Scholar 

  4. Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KB, Messiaen L (2015) Decoding NF1 intragenic copy-number variations. Am J Hum Genet. doi:10.1016/j.ajhg.2015.06.002

    PubMed  PubMed Central  Google Scholar 

  5. Kehrer-Sawatzki H, Bengesser K, Callens T, Mikhail F, Fu C, Hillmer M, Walker ME, Saal HM, Lacassie Y, Cooper DN, Messiaen L (2014) Identification of large NF1 duplications reciprocal to NAHR-mediated type-1 NF1 deletions. Hum Mutat 35(12):1469–1475. doi:10.1002/humu.22692

    Article  CAS  PubMed  Google Scholar 

  6. Hsiao MC, Piotrowski A, Alexander J, Callens T, Fu C, Mikhail FM, Claes KB, Messiaen L (2014) Palindrome-mediated and replication-dependent pathogenic structural rearrangements within the NF1 gene. Hum Mutat 35(7):891–898. doi:10.1002/humu.22569

    Article  CAS  PubMed  Google Scholar 

  7. Vogt J, Mussotter T, Bengesser K, Claes K, Hogel J, Chuzhanova N, Fu C, van den Ende J, Mautner VF, Cooper DN, Messiaen L, Kehrer-Sawatzki H (2012) Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. Hum Mutat 33(11):1599–1609. doi:10.1002/humu.22171

    Article  CAS  PubMed  Google Scholar 

  8. Wimmer K, Callens T, Wernstedt A, Messiaen L (2011) The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet 7(11):e1002371. doi:10.1371/journal.pgen.1002371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Messiaen L, Vogt J, Bengesser K, Fu C, Mikhail F, Serra E, Garcia-Linares C, Cooper DN, Lazaro C, Kehrer-Sawatzki H (2011) Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat 32(2):213–219. doi:10.1002/humu.21418

    Article  CAS  PubMed  Google Scholar 

  10. Abo-Dalo B, Kutsche K, Mautner V, Kluwe L (2010) Large intragenic deletions of the NF2 gene: breakpoints and associated phenotypes. Genes, chromosomes & cancer 49(2):171–175. doi:10.1002/gcc.20733

    CAS  Google Scholar 

  11. Buckley PG, Mantripragada KK, Diaz de Stahl T, Piotrowski A, Hansson CM, Kiss H, Vetrie D, Ernberg IT, Nordenskjold M, Bolund L, Sainio M, Rouleau GA, Niimura M, Wallace AJ, Evans DG, Grigelionis G, Menzel U, Dumanski JP (2005) Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2. Hum Mutat 26(6):540–549. doi:10.1002/humu.20255

    Article  CAS  PubMed  Google Scholar 

  12. Legoix P, Sarkissian HD, Cazes L, Giraud S, Sor F, Rouleau GA, Lenoir G, Thomas G, Zucman-Rossi J (2000) Molecular characterization of germline NF2 gene rearrangements. Genomics 65(1):62–66. doi:10.1006/geno.2000.6139

    Article  CAS  PubMed  Google Scholar 

  13. Lammert M, Friedman JM, Kluwe L, Mautner VF (2005) Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol 141(1):71–74. doi:10.1001/archderm.141.1.71

    Article  PubMed  Google Scholar 

  14. Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R (2005) Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 26(1):93–97

    Article  Google Scholar 

  15. Sellner LN, Taylor GR (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat 23(5):413–419. doi:10.1002/humu.20035

    Article  CAS  PubMed  Google Scholar 

  16. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15(6):541–555. doi:10.1002/1098-1004(200006)15:6<541::AID-HUMU6>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  17. Inoue K, Osaka H, Thurston VC, Clarke JT, Yoneyama A, Rosenbarker L, Bird TD, Hodes ME, Shaffer LG, Lupski JR (2002) Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 71(4):838–853. doi:10.1086/342728

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ottaviani D, LeCain M, Sheer D (2014) The role of microhomology in genomic structural variation. Trends in genetics: TIG 30(3):85–94. doi:10.1016/j.tig.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  19. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283(1):1–5. doi:10.1074/jbc.R700039200

    Article  CAS  PubMed  Google Scholar 

  20. Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327. doi:10.1371/journal.pgen.1000327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131(7):1235–1247. doi:10.1016/j.cell.2007.11.037

    Article  CAS  PubMed  Google Scholar 

  22. Carvalho CM, Pehlivan D, Ramocki MB, Fang P, Alleva B, Franco LM, Belmont JW, Hastings PJ, Lupski JR (2013) Replicative mechanisms for CNV formation are error prone. Nat Genet 45(11):1319–1326. doi:10.1038/ng.2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen JM, Chuzhanova N, Stenson PD, Ferec C, Cooper DN (2005) Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum Mutat 25(2):207–221. doi:10.1002/humu.20133

    Article  CAS  PubMed  Google Scholar 

  24. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR (2015) Somatic mosaicism: implications for disease and transmission genetics. Trends in genetics: TIG 31(7):382–392. doi:10.1016/j.tig.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported through internal funds from the Medical Genomics Laboratory at the University of Alabama at Birmingham (UAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwine Messiaen.

Ethics declarations

This study was approved by the UAB institutional review board. A waiver of informed consent and patient authorization has been obtained for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

(PDF 106 kb)

Fig. S2

(PDF 104 kb)

Fig. S3

(PDF 146 kb)

Table S1

(PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, MC., Piotrowski, A., Poplawski, A.B. et al. Alternative outcomes of pathogenic complex somatic structural variations in the genomes of NF1 and NF2 patients. Neurogenetics 18, 169–174 (2017). https://doi.org/10.1007/s10048-017-0512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-017-0512-x

Keywords

Navigation