Skip to main content

Advertisement

Log in

Mammalian sleep genetics

  • Review article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Mammalian sleep is a complex phenomenon governed by the interplay of neural circuits and signaling systems. The impact of genetic manipulations on sleep–wake dynamics provides important insights into this complex behavior. Here we review the sleep-related phenotypes of over 50 transgenic animal models spanning a variety of signaling systems. This heterogeneous literature includes outcomes spanning motor activity patterns, sleep–wake stage architecture, responses to sleep deprivation, circadian rhythmicity, and other perturbations such as food restriction, temperature challenge, and infection exposure. Insights from these animal experiments hold potential to converge with the well-known sleep–wake neurocircuitry as well as the increasingly available human genetic information, especially in patient populations exhibiting sleep–wake pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lonart G, Tang X, Simsek-Duran F, Machida M, Sanford LD (2008) The role of active zone protein Rab3 interacting molecule 1 alpha in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience 154(2):821–831

    PubMed  CAS  Google Scholar 

  2. Ambree O, Touma C, Gortz N, Keyvani K, Paulus W, Palme R, Sachser N (2006) Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice. Neurobiol Aging 27(7):955–964

    PubMed  CAS  Google Scholar 

  3. Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA et al (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38(5):715–730

    PubMed  CAS  Google Scholar 

  4. Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B, Rienks F, Poletaeva I, Dell’Omo G, Vyssotski A et al (2011) Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythms 26(2):118–129

    PubMed  Google Scholar 

  5. Kawada N, Solis G, Ivey N, Connors S, Dennehy K, Modlinger P, Hamel R, Kawada JT, Imai E, Langenbach R et al (2005) Cyclooxygenase-1-deficient mice have high sleep-to-wake blood pressure ratios and renal vasoconstriction. Hypertension 45(6):1131–1138

    PubMed  CAS  Google Scholar 

  6. Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H et al (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29(46):14423–14438

    PubMed  CAS  Google Scholar 

  7. Swihart BJ, Caffo B, Bandeen-Roche K, Punjabi NM (2008) Characterizing sleep structure using the hypnogram. J Clin Sleep Med 4(4):349–355

    PubMed  Google Scholar 

  8. Bianchi MT, Cash SS, Mietus J, Peng CK, Thomas R (2010) Obstructive sleep apnea alters sleep stage transition dynamics. PLoS One 5(6):e11356

    PubMed  Google Scholar 

  9. Blumberg MS, Seelke AM, Lowen SB, Karlsson KA (2005) Dynamics of sleep–wake cyclicity in developing rats. Proc Natl Acad Sci U S A 102(41):14860–14864

    PubMed  CAS  Google Scholar 

  10. Lo CC, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, Ivanov P (2004) Common scale-invariant patterns of sleep–wake transitions across mammalian species. Proc Natl Acad Sci U S A 101(50):17545–17548

    PubMed  CAS  Google Scholar 

  11. Chu-Shore J, Westover MB, Bianchi MT (2010) Power law versus exponential state transition dynamics: application to sleep–wake architecture. PLoS One 5(12):e14204

    PubMed  CAS  Google Scholar 

  12. Norman RG, Scott MA, Ayappa I, Walsleben JA, Rapoport DM (2006) Sleep continuity measured by survival curve analysis. Sleep 29(12):1625–1631

    PubMed  Google Scholar 

  13. Bianchi MT, Botzolakis EJ (2010) Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity? BMC Pharmacol 10:3

    PubMed  Google Scholar 

  14. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    PubMed  CAS  Google Scholar 

  15. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13(12):1526–1533

    PubMed  CAS  Google Scholar 

  16. Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    PubMed  Google Scholar 

  17. Franken P, Malafosse A, Tafti M (1998) Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol 275(4 Pt 2):R1127–R1137

    PubMed  CAS  Google Scholar 

  18. Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–2621

    PubMed  CAS  Google Scholar 

  19. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–1043

    PubMed  CAS  Google Scholar 

  20. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644

    PubMed  CAS  Google Scholar 

  21. Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287(1):R47–R57

    PubMed  CAS  Google Scholar 

  22. Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16(6):1099–1106

    PubMed  Google Scholar 

  23. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17(7):613–618

    PubMed  CAS  Google Scholar 

  24. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4):413–415

    PubMed  Google Scholar 

  25. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325(5942):866–870

    PubMed  CAS  Google Scholar 

  26. Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J, Eichele G, Taneja R, Nave KA (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS One 3(7):e2762

    PubMed  Google Scholar 

  27. Prosser HM, Bradley A, Chesham JE, Ebling FJ, Hastings MH, Maywood ES (2007) Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci U S A 104(2):648–653

    PubMed  CAS  Google Scholar 

  28. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A, Siegel JM, Zhou QY (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26(45):11615–11623

    PubMed  CAS  Google Scholar 

  29. Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30(3):247–256

    PubMed  Google Scholar 

  30. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20(21):8138–8143

    PubMed  CAS  Google Scholar 

  31. Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    PubMed  Google Scholar 

  32. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28(4):395–409

    PubMed  Google Scholar 

  33. Wisor JP, Jiang P, Striz M, O’Hara BF (2009) Effects of ramelteon and triazolam in a mouse genetic model of early morning awakenings. Brain Res 1296:46–55

    PubMed  CAS  Google Scholar 

  34. Zhang J, Obal F Jr, Fang J, Collins BJ, Krueger JM (1996) Non-rapid eye movement sleep is suppressed in transgenic mice with a deficiency in the somatotropic system. Neurosci Lett 220(2):97–100

    PubMed  CAS  Google Scholar 

  35. Obal F Jr, Alt J, Taishi P, Gardi J, Krueger JM (2003) Sleep in mice with nonfunctional growth hormone-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 284(1):R131–R139

    PubMed  CAS  Google Scholar 

  36. Peterfi Z, Obal F Jr, Taishi P, Gardi J, Kacsoh B, Unterman T, Krueger JM (2006) Sleep in spontaneous dwarf rats. Brain Res 1108(1):133–146

    PubMed  CAS  Google Scholar 

  37. Hajdu I, Obal F Jr, Fang J, Krueger JM, Rollo CD (2002) Sleep of transgenic mice producing excess rat growth hormone. Am J Physiol Regul Integr Comp Physiol 282(1):R70–R76

    PubMed  CAS  Google Scholar 

  38. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294(5551):2511–2515

    PubMed  CAS  Google Scholar 

  39. Romanowski CP, Fenzl T, Flachskamm C, Wurst W, Holsboer F, Deussing JM, Kimura M (2010) Central deficiency of corticotropin-releasing hormone receptor type 1 (CRH-R1) abolishes effects of CRH on NREM but not on REM sleep in mice. Sleep 33(4):427–436

    PubMed  Google Scholar 

  40. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156(4):819–829

    PubMed  CAS  Google Scholar 

  41. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res 218(1):42–50

    PubMed  CAS  Google Scholar 

  42. Obal F Jr, Garcia-Garcia F, Kacsoh B, Taishi P, Bohnet S, Horseman ND, Krueger JM (2005) Rapid eye movement sleep is reduced in prolactin-deficient mice. J Neurosci 25(44):10282–10289

    PubMed  CAS  Google Scholar 

  43. Vyazovskiy VV, Kopp C, Wigger E, Jones ME, Simpson ER, Tobler I (2006) Sleep and rest regulation in young and old oestrogen-deficient female mice. J Neuroendocrinol 18(8):567–576

    PubMed  CAS  Google Scholar 

  44. Franken P, Tafti M (2003) Genetics of sleep and sleep disorders. Front Biosci 8:e381–e397

    PubMed  CAS  Google Scholar 

  45. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354

    PubMed  CAS  Google Scholar 

  46. Blumberg MS, Coleman CM, Johnson ED, Shaw C (2007) Developmental divergence of sleep–wake patterns in orexin knockout and wild-type mice. Eur J Neurosci 25(2):512–518

    PubMed  Google Scholar 

  47. Bruni O, Ferri R, Miano S, Verrillo E, Vittori E, Della Marca G, Farina B, Mennuni G (2002) Sleep cyclic alternating pattern in normal school-age children. Clin Neurophysiol 113(11):1806–1814

    PubMed  Google Scholar 

  48. Hunsley MS, Curtis WR, Palmiter RD (2006) Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin. Genes Brain Behav 5(6):451–457

    PubMed  CAS  Google Scholar 

  49. De la Herran-Arita AK, Guerra-Crespo M, Drucker-Colin R (2011) Narcolepsy and orexins: an example of progress in sleep research. Front Neurol 2:26

    PubMed  Google Scholar 

  50. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24(28):6291–6300

    PubMed  CAS  Google Scholar 

  51. Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T (2011) Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 31(17):6518–6526

    PubMed  CAS  Google Scholar 

  52. Willie JT, Renthal W, Chemelli RM, Miller MS, Scammell TE, Yanagisawa M, Sinton CM (2005) Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates. Neuroscience 130(4):983–995

    PubMed  CAS  Google Scholar 

  53. Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM, Lapustea N, Murphy GM Jr (2005) Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer’s disease: a role for cholinergic transmission. Neuroscience 131(2):375–385

    PubMed  CAS  Google Scholar 

  54. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    PubMed  CAS  Google Scholar 

  55. Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW (2006) Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol 290(4):R894–R903

    PubMed  CAS  Google Scholar 

  56. Douglas CL, Bowman GN, Baghdoyan HA, Lydic R (2005) C57BL/6J and B6.V-LEPOB mice differ in the cholinergic modulation of sleep and breathing. J Appl Physiol 98(3):918–929

    PubMed  CAS  Google Scholar 

  57. Szentirmai E, Kapas L, Sun Y, Smith RG, Krueger JM (2009) The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice. Proc Natl Acad Sci U S A 106(33):14069–14074

    PubMed  CAS  Google Scholar 

  58. Szentirmai E, Kapas L, Sun Y, Smith RG, Krueger JM (2010) Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 298(2):R467–R477

    PubMed  CAS  Google Scholar 

  59. Szentirmai E, Kapas L, Sun Y, Smith RG, Krueger JM (2007) Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice. Am J Physiol Regul Integr Comp Physiol 293(1):R510–R517

    PubMed  CAS  Google Scholar 

  60. Pellinen J, Szentirmai E (2012) The effects of C75, an inhibitor of fatty acid synthase, on sleep and metabolism in mice. PLoS One 7(2):e30651

    PubMed  CAS  Google Scholar 

  61. Yoshida G, Li MX, Horiuchi M, Nakagawa S, Sakata M, Kuchiiwa S, Kuchiiwa T, Jalil MA, Begum L, Lu YB et al (2006) Fasting-induced reduction in locomotor activity and reduced response of orexin neurons in carnitine-deficient mice. Neurosci Res 55(1):78–86

    PubMed  CAS  Google Scholar 

  62. Shin J, Kim D, Bianchi R, Wong RK, Shin HS (2005) Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci U S A 102(50):18165–18170

    PubMed  CAS  Google Scholar 

  63. Graves LA, Hellman K, Veasey S, Blendy JA, Pack AI, Abel T (2003) Genetic evidence for a role of CREB in sustained cortical arousal. J Neurophysiol 90(2):1152–1159

    PubMed  CAS  Google Scholar 

  64. Ferland RJ, Li X, Buhlmann JE, Bu X, Walsh CA, Lim B (2005) Characterization of Rho-GDIgamma and Rho-GDIalpha mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIgamma. Brain Res 1054(1):9–21

    PubMed  CAS  Google Scholar 

  65. Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, Tafti M (2005) Retinoic acid signaling affects cortical synchrony during sleep. Science 310(5745):111–113

    PubMed  CAS  Google Scholar 

  66. Kapfhamer D, Valladares O, Sun Y, Nolan PM, Rux JJ, Arnold SE, Veasey SC, Bucan M (2002) Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nat Genet 32(2):290–295

    PubMed  CAS  Google Scholar 

  67. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16(1):23–41

    PubMed  CAS  Google Scholar 

  68. Langmesser S, Franken P, Feil S, Emmenegger Y, Albrecht U, Feil R (2009) cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. PLoS One 4(1):e4238

    PubMed  Google Scholar 

  69. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2010) Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J Neurosci 30(40):13254–13264

    PubMed  CAS  Google Scholar 

  70. Chen L, Majde JA, Krueger JM (2003) Spontaneous sleep in mice with targeted disruptions of neuronal or inducible nitric oxide synthase genes. Brain Res 973(2):214–222

    PubMed  CAS  Google Scholar 

  71. Huitron-Resendiz S, Sanchez-Alavez M, Wills DN, Cravatt BF, Henriksen SJ (2004) Characterization of the sleep–wake patterns in mice lacking fatty acid amide hydrolase. Sleep 27(5):857–865

    PubMed  Google Scholar 

  72. Tafti M, Petit B, Chollet D, Neidhart E, de Bilbao F, Kiss JZ, Wood PA, Franken P (2003) Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat Genet 34(3):320–325

    PubMed  CAS  Google Scholar 

  73. Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T et al (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 98(20):11674–11679

    PubMed  CAS  Google Scholar 

  74. Qu WM, Huang ZL, Xu XH, Aritake K, Eguchi N, Nambu F, Narumiya S, Urade Y, Hayaishi O (2006) Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proc Natl Acad Sci U S A 103(47):17949–17954

    PubMed  CAS  Google Scholar 

  75. Pinzar E, Kanaoka Y, Inui T, Eguchi N, Urade Y, Hayaishi O (2000) Prostaglandin D synthase gene is involved in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 97(9):4903–4907

    PubMed  CAS  Google Scholar 

  76. Sanchez-Alavez M, Klein I, Brownell SE, Tabarean IV, Davis CN, Conti B, Bartfai T (2007) Night eating and obesity in the EP3R-deficient mouse. Proc Natl Acad Sci U S A 104(8):3009–3014

    PubMed  CAS  Google Scholar 

  77. Durand E, Dauger S, Pattyn A, Gaultier C, Goridis C, Gallego J (2005) Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. Am J Respir Crit Care Med 172(2):238–243

    PubMed  Google Scholar 

  78. Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R, O’Hara BF, McKnight SL (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci U S A 103(18):7118–7123

    PubMed  CAS  Google Scholar 

  79. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301(5631):379–383

    PubMed  CAS  Google Scholar 

  80. Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC (2005) NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 172(7):921–929

    PubMed  Google Scholar 

  81. Deboer T, Fontana A, Tobler I (2002) Tumor necrosis factor (TNF) ligand and TNF receptor deficiency affects sleep and the sleep EEG. J Neurophysiol 88(2):839–846

    PubMed  CAS  Google Scholar 

  82. Kapas L, Bohnet SG, Traynor TR, Majde JA, Szentirmai E, Magrath P, Taishi P, Krueger JM (2008) Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice. J Appl Physiol 105(4):1187–1198

    PubMed  CAS  Google Scholar 

  83. Fang J, Wang Y, Krueger JM (1997) Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J Neurosci 17(15):5949–5955

    PubMed  CAS  Google Scholar 

  84. Jhaveri KA, Ramkumar V, Trammell RA, Toth LA (2006) Spontaneous, homeostatic, and inflammation-induced sleep in NF-kappaB p50 knockout mice. Am J Physiol Regul Integr Comp Physiol 291(5):R1516–R1526

    PubMed  CAS  Google Scholar 

  85. Toth LA, Opp MR (2001) Cytokine- and microbially induced sleep responses of interleukin-10 deficient mice. Am J Physiol Regul Integr Comp Physiol 280(6):R1806–R1814

    PubMed  CAS  Google Scholar 

  86. Fang J, Wang Y, Krueger JM (1998) Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am J Physiol 274(3 Pt 2):R655–R660

    PubMed  CAS  Google Scholar 

  87. Morrow JD, Opp MR (2005) Sleep–wake behavior and responses of interleukin-6-deficient mice to sleep deprivation. Brain Behav Immun 19(1):28–39

    PubMed  CAS  Google Scholar 

  88. Bohnet SG, Traynor TR, Majde JA, Kacsoh B, Krueger JM (2004) Mice deficient in the interferon type I receptor have reduced REM sleep and altered hypothalamic hypocretin, prolactin and 2′,5′-oligoadenylate synthetase expression. Brain Res 1027(1–2):117–125

    PubMed  CAS  Google Scholar 

  89. Wisor JP, Clegern WC, Schmidt MA (2011) Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. Sleep 34(10):1335–1345

    PubMed  Google Scholar 

  90. Bianchi MT (2008) Non-serotonin anti-depressant actions: direct ion channel modulation by SSRIs and the concept of single agent poly-pharmacy. Med Hypotheses 70(5):951–956

    PubMed  CAS  Google Scholar 

  91. Rammes G, Rupprecht R (2007) Modulation of ligand-gated ion channels by antidepressants and antipsychotics. Mol Neurobiol 35(2):160–174

    PubMed  CAS  Google Scholar 

  92. Shelton J, Bonaventure P, Li X, Yun S, Lovenberg T, Dugovic C (2009) 5-HT7 receptor deletion enhances REM sleep suppression induced by selective serotonin reuptake inhibitors, but not by direct stimulation of 5-HT1A receptor. Neuropharmacology 56(2):448–454

    PubMed  CAS  Google Scholar 

  93. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22(11):4686–4692

    PubMed  CAS  Google Scholar 

  94. Boutrel B, Franc B, Hen R, Hamon M, Adrien J (1999) Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci 19(8):3204–3212

    PubMed  CAS  Google Scholar 

  95. Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25(49):11231–11238

    PubMed  CAS  Google Scholar 

  96. Frank MG, Stryker MP, Tecott LH (2002) Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 27(5):869–873

    PubMed  CAS  Google Scholar 

  97. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58(10):831–837

    PubMed  CAS  Google Scholar 

  98. Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28(5):850–856

    PubMed  CAS  Google Scholar 

  99. Real C, Seif I, Adrien J, Escourrou P (2009) Ondansetron and fluoxetine reduce sleep apnea in mice lacking monoamine oxidase A. Respir Physiol Neurobiol 168(3):230–238

    PubMed  CAS  Google Scholar 

  100. Smith I, Lasserson TJ, Wright J (2006) Drug therapy for obstructive sleep apnoea in adults. Cochrane Database Syst Rev (2):CD003002

  101. Alexandre C, Popa D, Fabre V, Bouali S, Venault P, Lesch KP, Hamon M, Adrien J (2006) Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci 26(20):5554–5564

    PubMed  CAS  Google Scholar 

  102. Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, Uhl GR, Edgar DM (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14(2):233–238

    PubMed  CAS  Google Scholar 

  103. Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, Boye P, Vilianovitch L, Sohr R, Tenner K et al (2009) Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci U S A 106(25):10332–10337

    PubMed  CAS  Google Scholar 

  104. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22(17):7695–7711

    PubMed  CAS  Google Scholar 

  105. Inoue I, Yanai K, Kitamura D, Taniuchi I, Kobayashi T, Niimura K, Watanabe T (1996) Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S A 93(23):13316–13320

    PubMed  CAS  Google Scholar 

  106. Toyota H, Dugovic C, Koehl M, Laposky AD, Weber C, Ngo K, Wu Y, Lee DH, Yanai K, Sakurai E et al (2002) Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 62(2):389–397

    PubMed  CAS  Google Scholar 

  107. Huang ZL, Mochizuki T, Qu WM, Hong ZY, Watanabe T, Urade Y, Hayaishi O (2006) Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc Natl Acad Sci U S A 103(12):4687–4692

    PubMed  CAS  Google Scholar 

  108. Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M et al (2007) The brain H3-receptor as a novel therapeutic target for vigilance and sleep–wake disorders. Biochem Pharmacol 73(8):1157–1171

    PubMed  CAS  Google Scholar 

  109. Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 98(17):9965–9970

    PubMed  CAS  Google Scholar 

  110. Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29(35):10939–10949

    PubMed  CAS  Google Scholar 

  111. Bianchi MT (2010) Context dependent benzodiazepine modulation of GABA(A) receptor opening frequency. Curr Neuropharmacol 8(1):10–17

    PubMed  CAS  Google Scholar 

  112. Laposky AD, Homanics GE, Basile A, Mendelson WB (2001) Deletion of the GABA(A) receptor beta 3 subunit eliminates the hypnotic actions of oleamide in mice. Neuroreport 12(18):4143–4147

    PubMed  CAS  Google Scholar 

  113. Wisor JP, DeLorey TM, Homanics GE, Edgar DM (2002) Sleep states and sleep electroencephalographic spectral power in mice lacking the beta 3 subunit of the GABA(A) receptor. Brain Res 955(1–2):221–228

    PubMed  CAS  Google Scholar 

  114. Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M et al (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106(11):4459–4464

    PubMed  CAS  Google Scholar 

  115. Winsky-Sommerer R, Knapman A, Fedele DE, Schofield CM, Vyazovskiy VV, Rudolph U, Huguenard JR, Fritschy JM, Tobler I (2008) Normal sleep homeostasis and lack of epilepsy phenotype in GABA A receptor alpha3 subunit-knockout mice. Neuroscience 154(2):595–605

    PubMed  CAS  Google Scholar 

  116. Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the alpha 1 GABA(A) receptor subtype. Proc Natl Acad Sci U S A 98(11):6464–6469

    PubMed  CAS  Google Scholar 

  117. Tobler I, Kopp C, Deboer T, Rudolph U, Low K, Tobler I (2001) Diazepam-induced changes in sleep: role of the alpha 1 GABAA receptor subtype. Proc Natl Acad Sci U S A 98(11):6464–6469

    PubMed  CAS  Google Scholar 

  118. Kopp C, Rudolph U, Low K, Tobler I (2004) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci U S A 101(10):3674–3679

    PubMed  CAS  Google Scholar 

  119. Quinlan JJ, Firestone LL, Homanics GE (2000) Mice lacking the long splice variant of the gamma 2 subunit of the GABA(A) receptor are more sensitive to benzodiazepines. Pharmacol Biochem Behav 66(2):371–374

    PubMed  CAS  Google Scholar 

  120. Coyne L, Lees G, Nicholson RA, Zheng J, Neufield KD (2002) The sleep hormone oleamide modulates inhibitory ionotropic receptors in mammalian CNS in vitro. Br J Pharmacol 135(8):1977–1987

    PubMed  CAS  Google Scholar 

  121. Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur J Neurosci 25(6):1893–1899

    PubMed  Google Scholar 

  122. Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136(7):965–974

    PubMed  CAS  Google Scholar 

  123. Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588(Pt 8):1251–1268

    PubMed  CAS  Google Scholar 

  124. Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA(A) receptors. J Neurophysiol 106(4):2057–2064

    PubMed  CAS  Google Scholar 

  125. Boehm SL 2nd, Homanics GE, Blednov YA, Harris RA (2006) Delta-subunit containing GABAA receptor knockout mice are less sensitive to the actions of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol. Eur J Pharmacol 541(3):158–162

    PubMed  CAS  Google Scholar 

  126. Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58(1):157–177

    PubMed  CAS  Google Scholar 

  127. Trulson ME (1985) Simultaneous recording of substantia nigra neurons and voltammetric release of dopamine in the caudate of behaving cats. Brain Res Bull 15(2):221–223

    PubMed  CAS  Google Scholar 

  128. Nishino S, Mao J, Sampathkumaran R, Shelton J (1998) Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1(1):49–61

    PubMed  CAS  Google Scholar 

  129. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21(5):1787–1794

    PubMed  CAS  Google Scholar 

  130. Steenland HW, Kim SS, Zhuo M (2008) GluR3 subunit regulates sleep, breathing and seizure generation. Eur J Neurosci 27(5):1166–1173

    PubMed  Google Scholar 

  131. Hunsley MS, Palmiter RD (2004) Altered sleep latency and arousal regulation in mice lacking norepinephrine. Pharmacol Biochem Behav 78(4):765–773

    PubMed  CAS  Google Scholar 

  132. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T (2003) Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res 12(4):283–290

    PubMed  Google Scholar 

  133. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 29(5):1267–1276

    PubMed  CAS  Google Scholar 

  134. Retey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102(43):15676–15681

    PubMed  CAS  Google Scholar 

  135. Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S, Berger W, Landolt HP (2012) Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22(4):962–970

    PubMed  Google Scholar 

  136. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H (2008) Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 33(12):2791–2800

    PubMed  CAS  Google Scholar 

  137. Retey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2007) A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther 81(5):692–698

    PubMed  CAS  Google Scholar 

  138. Goutagny R, Comte JC, Salvert D, Gomeza J, Yamada M, Wess J, Luppi PH, Fort P (2005) Paradoxical sleep in mice lacking M3 and M2/M4 muscarinic receptors. Neuropsychobiology 52(3):140–146

    PubMed  CAS  Google Scholar 

  139. Fonck C, Cohen BN, Nashmi R, Whiteaker P, Wagenaar DA, Rodrigues-Pinguet N, Deshpande P, McKinney S, Kwoh S, Munoz J et al (2005) Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive alpha 4* nicotinic receptors. J Neurosci 25(49):11396–11411

    PubMed  CAS  Google Scholar 

  140. Lena C, Popa D, Grailhe R, Escourrou P, Changeux JP, Adrien J (2004) Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. J Neurosci 24(25):5711–5718

    PubMed  CAS  Google Scholar 

  141. Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40(2):175–190

    PubMed  CAS  Google Scholar 

  142. Lee J, Kim D, Shin HS (2004) Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci U S A 101(52):18195–18199

    PubMed  CAS  Google Scholar 

  143. Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci U S A 102(5):1743–1748

    PubMed  CAS  Google Scholar 

  144. Beuckmann CT, Sinton CM, Miyamoto N, Ino M, Yanagisawa M (2003) N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. J Neurosci 23(17):6793–6797

    PubMed  CAS  Google Scholar 

  145. Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11(6):683–692

    PubMed  CAS  Google Scholar 

  146. Joho RH, Ho CS, Marks GA (1999) Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. J Neurophysiol 82(4):1855–1864

    PubMed  CAS  Google Scholar 

  147. Joho RH, Marks GA, Espinosa F (2006) Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms. Eur J Neurosci 23(6):1567–1574

    PubMed  Google Scholar 

  148. Vyazovskiy VV, Deboer T, Rudy B, Lau D, Borbely AA, Tobler I (2002) Sleep EEG in mice that are deficient in the potassium channel subunit K.v.3.2. Brain Res 947(2):204–211

    PubMed  CAS  Google Scholar 

  149. Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C (2007) Sleep in Kcna2 knockout mice. BMC Biol 5:42

    PubMed  Google Scholar 

  150. Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP (2009) An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 106(41):17546–17551

    PubMed  CAS  Google Scholar 

  151. Gotter AL, Santarelli VP, Doran SM, Tannenbaum PL, Kraus RL, Rosahl TW, Meziane H, Montial M, Reiss DR, Wessner K et al (2011) TASK-3 as a potential antidepressant target. Brain Res 1416:69–79

    PubMed  CAS  Google Scholar 

  152. Papale LA, Paul KN, Sawyer NT, Manns JR, Tufik S, Escayg A (2010) Dysfunction of the Scn8a voltage-gated sodium channel alters sleep architecture, reduces diurnal corticosterone levels, and enhances spatial memory. J Biol Chem 285(22):16553–16561

    PubMed  CAS  Google Scholar 

  153. Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20(2):617–625

    PubMed  CAS  Google Scholar 

  154. Ryu KY, Fujiki N, Kazantzis M, Garza JC, Bouley DM, Stahl A, Lu XY, Nishino S, Kopito RR (2010) Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice. Neuropathol Appl Neurobiol 36(4):285–299

    PubMed  CAS  Google Scholar 

  155. Colas D, Wagstaff J, Fort P, Salvert D, Sarda N (2005) Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol Dis 20(2):471–478

    PubMed  CAS  Google Scholar 

  156. Shiromani PJ, Basheer R, Thakkar J, Wagner D, Greco MA, Charness ME (2000) Sleep and wakefulness in c-fos and fos B gene knockout mice. Brain Res Mol Brain Res 80(1):75–87

    PubMed  CAS  Google Scholar 

  157. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O’Hara BF, Franken P, Tafti M (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104(50):20090–20095

    PubMed  CAS  Google Scholar 

  158. Brown K, Mastrianni JA (2010) The prion diseases. J Geriatr Psychiatry Neurol 23(4):277–298

    PubMed  Google Scholar 

  159. Tobler I, Deboer T, Fischer M (1997) Sleep and sleep regulation in normal and prion protein-deficient mice. J Neurosci 17(5):1869–1879

    PubMed  CAS  Google Scholar 

  160. Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380(6575):639–642

    PubMed  CAS  Google Scholar 

  161. Huber R, Deboer T, Tobler I (2002) Sleep deprivation in prion protein deficient mice sleep deprivation in prion protein deficient mice and control mice: genotype dependent regional rebound. Neuroreport 13(1):1–4

    PubMed  Google Scholar 

  162. Sanchez-Alavez M, Conti B, Moroncini G, Criado JR (2007) Contributions of neuronal prion protein on sleep recovery and stress response following sleep deprivation. Brain Res 1158:71–80

    PubMed  CAS  Google Scholar 

  163. Dossena S, Imeri L, Mangieri M, Garofoli A, Ferrari L, Senatore A, Restelli E, Balducci C, Fiordaliso F, Salio M et al (2008) Mutant prion protein expression causes motor and memory deficits and abnormal sleep patterns in a transgenic mouse model. Neuron 60(4):598–609

    PubMed  CAS  Google Scholar 

  164. Deschenes CL, McCurry SM (2009) Current treatments for sleep disturbances in individuals with dementia. Curr Psychiatry Rep 11(1):20–26

    PubMed  Google Scholar 

  165. Dauvilliers Y (2007) Insomnia in patients with neurodegenerative conditions. Sleep Med 8(Suppl 4):S27–S34

    PubMed  Google Scholar 

  166. Colas D, London J, Gharib A, Cespuglio R, Sarda N (2004) Sleep-wake architecture in mouse models for Down syndrome. Neurobiol Dis 16(2):291–299

    PubMed  CAS  Google Scholar 

  167. Hu K, Van Someren EJ, Shea SA, Scheer FA (2009) Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: involvement of the circadian pacemaker. Proc Natl Acad Sci U S A 106(8):2490–2494

    PubMed  CAS  Google Scholar 

  168. Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C, Leight S, Abel T, Lee VM, Trojanowski JQ (2005) Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer’s disease with injury to pedunculopontine cholinergic neurons. Am J Pathol 167(5):1361–1369

    PubMed  CAS  Google Scholar 

  169. Huitron-Resendiz S, Sanchez-Alavez M, Gallegos R, Berg G, Crawford E, Giacchino JL, Games D, Henriksen SJ, Criado JR (2002) Age-independent and age-related deficits in visuospatial learning, sleep–wake states, thermoregulation and motor activity in PDAPP mice. Brain Res 928(1–2):126–137

    PubMed  CAS  Google Scholar 

  170. Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T, Raber J (2005) apoE isoforms and measures of anxiety in probable AD patients and Apoe −/− mice. Neurobiol Aging 26(5):637–643

    PubMed  CAS  Google Scholar 

  171. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep–wake cycle and circadian timing in Huntington’s disease. J Neurosci 25(1):157–163

    PubMed  CAS  Google Scholar 

  172. Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R, Hastings MH, Morton AJ (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27(29):7869–7878

    PubMed  CAS  Google Scholar 

  173. Colas D, London J, Cespuglio R, Sarda N (2003) Polysomnography in transgenic hSOD1 mice as Down syndrome model. J Neural Transm Suppl 67:165–171

    PubMed  CAS  Google Scholar 

  174. Rial RV, Nicolau MC, Gamundi A, Akaarir M, Aparicio S, Garau C, Tejada S, Roca C, Gene L, Moranta D et al (2007) The trivial function of sleep. Sleep Med Rev 11(4):311–325

    PubMed  Google Scholar 

Download references

Support

Dr. Bianchi receives funding from the Department of Neurology, Massachusetts General Hospital, a Young Clinician Award from the Center for Integration of Medicine and Innovative Technology, and a Harvard Catalyst KL2 Medical Research Investigator Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt T. Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.M., Bianchi, M.T. Mammalian sleep genetics. Neurogenetics 13, 287–326 (2012). https://doi.org/10.1007/s10048-012-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-012-0341-x

Keywords

Navigation