Skip to main content

Advertisement

Log in

Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Dystrophin deficiency leads to the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). Dystrophin-deficient mdx mice are characterized by skeletal muscle weakness and degeneration but they appear outwardly normal in contrast to DMD patients. Mice lacking both dystrophin and the dystrophin homolog utrophin [double knockout (dko)] have muscle degeneration similar to mdx mice, but they display clinical features similar to DMD patients. Dko limb muscles also lack postsynaptic membrane folding and display fiber-type abnormalities including an abundance of phenotypically oxidative muscle fibers. Extraocular muscles, which are spared in mdx mice, show a significant pathology in dko mice. In this study, microarray analysis was used to characterize gene expression differences between mdx and dko tibialis anterior and extraocular skeletal muscles in an effort to understand the phenotypic differences between these two dystrophic mouse models. Analysis of gene expression differences showed that upregulation of slow muscle genes specifically characterizes dko limb muscle and suggests that upregulation of these genes may directly account for the more severe phenotype of dko mice. To investigate whether any upregulation of slow genes is retained in vitro, independent of postsynaptic membrane abnormalities, we derived mdx and dko primary myogenic cultures and analyzed the expression of Myh7 and Myl2. Real-time reverse transcriptase-polymerase chain reaction analysis demonstrates that transcription of these slow genes is also upregulated in dko vs mdx myotubes. This data suggests that at least part of the fiber-type abnormality is due directly to the combined absence of utrophin and dystrophin and is not an indirect effect of the postsynaptic membrane abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campbell KP (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679

    Article  PubMed  CAS  Google Scholar 

  2. Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3:283–291

    Article  PubMed  CAS  Google Scholar 

  3. Tinsley JM, Blake DJ, Zuellig RA, Davies KE (1994) Increasing complexity of the dystrophin-associated protein complex. Proc Natl Acad Sci U S A 91:8307–8313

    Article  PubMed  CAS  Google Scholar 

  4. Hemmings L, Kuhlman PA, Critchley DR (1992) Analysis of the actin-binding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J Cell Biol 116:1369–1380

    Article  PubMed  CAS  Google Scholar 

  5. Rybakova IN, Amann KJ, Ervasti JM (1996) A new model for the interaction of dystrophin with F-actin. J Cell Biol 135:661–672

    Article  PubMed  CAS  Google Scholar 

  6. Way M, Pope B, Cross RA, Kendrick-Jones J, Weeds AG (1992) Expression of the N-terminal domain of dystrophin in E. coli and demonstration of binding to F-actin. FEBS Lett 301:243–245

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki A, Yoshida M, Hayashi K, Mizuno Y, Hagiwara Y, Ozawa E (1994) Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur J Biochem 220:283–292

    Article  PubMed  CAS  Google Scholar 

  8. Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP (1995) Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 270:27305–27310

    Article  PubMed  CAS  Google Scholar 

  9. Rosa G, Ceccarini M, Cavaldesi M, Zini M, Petrucci TC (1996) Localization of the dystrophin binding site at the carboxyl terminus of beta-dystroglycan. Biochem Biophys Res Commun 223:272–277

    Article  PubMed  CAS  Google Scholar 

  10. Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–226

    Article  PubMed  CAS  Google Scholar 

  11. Monaco AP, Neve RL, Colletti Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323:646–650

    Article  PubMed  CAS  Google Scholar 

  12. Emery AEH (1993) Duchenne muscular dystrophy, 2nd edn. Oxford Univ. Press, Oxford

    Google Scholar 

  13. Bradley WG, Hudgson P, Larson PF, Papapetropoulos TA, Jenkison M (1972) Structural changes in the early stages of Duchenne muscular dystrophy congenital muscular dystrophy. J Neurol Neurosurg Psychiatry 35:451–455

    PubMed  CAS  Google Scholar 

  14. Conen PE, Bell CD (1970) Histopathological changes in Duchenne muscular dystrophy. J Neurol Sci 10:163–171

    Article  PubMed  Google Scholar 

  15. Matsumura K, Ervasti JM, Ohlendieck K, Kahl SD, Campbell KP (1992) Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360:588–591

    Article  PubMed  CAS  Google Scholar 

  16. Matsumura K, Tome FM, Collin H, Leturcq F, Jeanpierre M, Kaplan JC, Fardeau M, Campbell KP (1994) Expression of dystrophin-associated proteins in dystrophin-positive muscle fibers (revertants) in Duchenne muscular dystrophy. Neuromuscul Disord 4:115–120

    Article  PubMed  CAS  Google Scholar 

  17. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  PubMed  CAS  Google Scholar 

  18. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  PubMed  CAS  Google Scholar 

  19. Mattson MP (2001) Pathogenesis of neurodegenerative disorders. In: Contemporary neuroscience. Humana, Totowa, NJ, pp x and 294

  20. Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4:1441–1444

    Article  PubMed  CAS  Google Scholar 

  21. Bewick GS, Nicholson LV, Young C, O’Donnell E, Slater CR (1992) Different distributions of dystrophin and related proteins at nerve-muscle junctions. Neuroreport 3:857–860

    Article  PubMed  CAS  Google Scholar 

  22. Law DJ, Allen DL, Tidball JG (1994) Talin, vinculin and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis. J Cell Sci 107:1477–1483

    PubMed  CAS  Google Scholar 

  23. Deconinck AE, Potter AC, Tinsley JM, Wood SJ, Vater R, Young C, Metzinger L, Vincent A, Slater CR, Davies KE (1997) Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. J Cell Biol 136:883–894

    Article  PubMed  CAS  Google Scholar 

  24. Lyons PR, Slater CR (1991) Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20:969–981

    Article  PubMed  CAS  Google Scholar 

  25. Nagel A, Lehmann-Horn F, Engel AG (1990) Neuromuscular transmission in the mdx mouse. Muscle Nerve 13:742–749

    Article  PubMed  CAS  Google Scholar 

  26. Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90:717–727

    Article  PubMed  CAS  Google Scholar 

  27. Rafael JA, Townsend ER, Squire SE, Potter AC, Chamberlain JS, Davies KE (2000) Dystrophin and utrophin influence fiber-type composition and post-synaptic membrane structure. Hum Mol Genet 9:1357–1367

    Article  PubMed  CAS  Google Scholar 

  28. Deconinck N, Rafael JA, Beckers-Bleukx G, Kahn D, Deconinck AE, Davies KE, Gillis JM (1998) Consequences of the combined deficiency in dystrophin and utrophin on the mechanical properties and myosin composition of some limb and respiratory muscles of the mouse. Neuromuscul Disord 8:362–370

    Article  PubMed  CAS  Google Scholar 

  29. Rafael JA, Cox GA, Corrado K, Jung D, Campbell KP, Chamberlain JS (1996) Forced expression of dystrophin deletion constructs reveals structure–function correlations. J Cell Biol 134:93–102

    Article  PubMed  CAS  Google Scholar 

  30. Spencer RF, Porter JD (2005) Biological organization of the extraocular muscles. Prog Brain Res 151:43–80

    Article  PubMed  Google Scholar 

  31. Porter JD, Rafael JA, Ragusa RJ, Brueckner JK, Trickett JI, Davies KE (1998) The sparing of extraocular muscle in dystrophinopathy is lost in mice lacking utrophin and dystrophin. J Cell Sci 111:1801–1811

    PubMed  CAS  Google Scholar 

  32. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272

    Article  PubMed  CAS  Google Scholar 

  33. Friedman DJ, Nigro JM, Jakovcic S, Rabinowitz M, Umeda PK (1984) J Biol Chem 259:6674–6680

    PubMed  Google Scholar 

  34. Lyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M (1990) Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111:2427–2436

    Article  PubMed  CAS  Google Scholar 

  35. Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, Davies K, Gillis JM (1997) Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 3:1216–1221

    Article  PubMed  CAS  Google Scholar 

  36. Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T (1999) Remodeling of cell–cell and cell–extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85:1046–1055

    PubMed  CAS  Google Scholar 

  37. Porter JD, Merriam AP, Leahy P, Gong B, Feuerman J, Cheng G, Khanna S (2004) Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet 13:257–269

    Article  PubMed  CAS  Google Scholar 

  38. Porter JD, Merriam AP, Leahy P, Gong B, Khanna S (2003) Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice. Hum Mol Genet 12:1813–1821

    Article  PubMed  CAS  Google Scholar 

  39. Sanford JL, Mays TA, Rafael-Fortney JA (2004) CASK and Dlg form a PDZ protein complex at the mammalian neuromuscular junction. Muscle Nerve 30:164–171

    Article  PubMed  CAS  Google Scholar 

  40. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  CAS  Google Scholar 

  41. Pette D, Staron R (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  42. LaFramboise WA, Guthrie RD, Scalise D, Elborne V, Bombach KL, Armanious CS, Magovern JA (2003) Effect of muscle origin and phenotype on satellite cell muscle-specific gene expression. J Mol Cell Cardiol 35:1307–1318

    Article  PubMed  CAS  Google Scholar 

  43. Lee KJ, Helfman DM, Schroer TA (1992) Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. Nature 359:244–246

    Article  Google Scholar 

  44. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90:729–738

    Article  PubMed  CAS  Google Scholar 

  45. Janney MJ, Allen RE, Cornelison DD (1994) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. J Cell Physiol 159:379–385

    Article  PubMed  Google Scholar 

  46. Holt J, Easton J, Smith K, Goldspink DF, Smith CK, 2nd (1994) Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 161:49–54

    Article  PubMed  Google Scholar 

  47. Garry DJ, Hawke TJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  Google Scholar 

  48. Close R (1965) Force: velocity properties of mouse muscles. Nature 206:718–719

    Article  PubMed  CAS  Google Scholar 

  49. Ng W, Grupp I, Subramaniam A, Robbins J (1991) Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ Res 68:1742–1750

    PubMed  CAS  Google Scholar 

  50. Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson KG, Oldfors A (2003) Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol 54:494–500

    Article  PubMed  CAS  Google Scholar 

  51. Perrot A, Schmidt-Traub H, Hoffmann B, Prager M, Bit-Avragim N, Rudenko RI, Usupbaeva DA, Kabaeva Z, Imanov B, Mirrakhimov MM et al (2005) Prevalence of cardiac beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Mol Med 83:468–477

    Article  PubMed  CAS  Google Scholar 

  52. Villard E, Duboscq-Bidot L, Charron P, Benaiche A, Conraads V, Sylvius N, Komajda M (2005) Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J 26:794–803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Muscular Dystrophy Association (to JRF), NIH R01 EY12779 (to JDP), and in part, by a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund (to JRF). PEB was supported by an NIH supplement (AR47034-S). We would like to thank Jaimy Lekan, Katherine L. Gardner, Jonathan Edwards, and Chad Groer for technical assistance and the Biochemistry and Molecular Biology Core, Department of Veterinary Biosciences, OSU for the use of the real-time PCR machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill A. Rafael-Fortney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, P.E., Kearney, J.A., Gong, B. et al. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles. Neurogenetics 7, 81–91 (2006). https://doi.org/10.1007/s10048-006-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0031-7

Keywords

Navigation