Skip to main content
Log in

An artificial pancreas provided a novel model of blood glucose level variability in beagles

  • Brief Communication
  • Artificial Liver, Pancreas
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, Freire AX, Geehan D, Kohl B, Nasraway SA, Rigby M, Sands K, Schallom L, Taylor B, Umpierrez G, Mazuski J, Schunemann H. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40:3251–76.

    Article  PubMed  Google Scholar 

  2. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.

    Article  CAS  PubMed  Google Scholar 

  3. Yatabe T, Yamazaki R, Kitagawa H, Okabayashi T, Yamashita K, Hanazaki K, Yokoyama M. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients. Crit Care Med. 2011;39:575–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kono T, Hanazaki K, Yazawa K, Ashizawa S, Fisher WE, Wang XP, Nosé Y, Brunicardi FC. Pancreatic polypeptide administration reduces insulin requirements of artificial pancreas in pancreatectomized dogs. Artif Organs. 2005;29:83–7.

    Article  PubMed  Google Scholar 

  5. Yamashita K, Okabayashi T, Yokoyama T, Yatabe T, Maeda H, Manabe M, Hanazaki K. The accuracy of a continuous blood glucose monitor during surgery. Anesth Analg. 2008;106:160–3.

    Article  PubMed  Google Scholar 

  6. Hermanides J, Bosman RJ, Vriesendorp TM, Dotsch R, Rosendaal FR, Zandstra DF, Hoekstra JB, DeVries JH. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;38:1430–4.

    Article  PubMed  Google Scholar 

  7. Buckley MS, Leblanc JM, Cawley MJ. Electrolyte disturbances associated with commonly prescribed medications in the intensive care unit. Crit Care Med. 2010;38:S253–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 26350504.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaya Munekage or Tomoaki Yatabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munekage, M., Yatabe, T., Kitagawa, H. et al. An artificial pancreas provided a novel model of blood glucose level variability in beagles. J Artif Organs 18, 387–390 (2015). https://doi.org/10.1007/s10047-015-0854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0854-9

Keywords

Navigation