Skip to main content
Log in

Monitoring of the formation of biofilm inside a glass tube using light scattering patterns

  • Special Section: Regular Paper
  • The Fourteenth Japan-Finland Joint Symposium on Optics in Engineering (OIE’23), Hamamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In a flow channel, generally, microorganisms derived from bacteria contained in water first attach to a surface, form colonies and then become a pollutant known as biofilm. It is important to control the generation and growth of this pollutant, because it has the disadvantage of causing insanitary conditions inside tubes employed in medical and food processing, resulting in various infections. In the present study, we estimate the process of formation of biofilm inside a glass tube by means of binarization and fractal dimension of light scattering patterns obtained under illumination of a white light source and a laser diode. Experiments are conducted for glass tubes filled with bacteria-containing water without flow and with flow to confirm the feasibility of the present method for monitoring biofilm adhering to their inner surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data and materials are in the manuscript.

References

  1. Donlan, R.M.: Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8(9), 881–890 (2002)

    Article  Google Scholar 

  2. Budeli, P., Moropeng, R.C., Mpenyana-Monyatsi, L., Momba, M.N.B.: Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems. PLoS One 13(4), e0194715 (2018)

    Article  Google Scholar 

  3. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J., Rådström, P.: Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 5(1), Article number: 9 (2019)

  4. Lebeaux, D., Ghigo, J.M., Beloina, C.: Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3), 510–543 (2014)

    Article  Google Scholar 

  5. Gutiérrez, D., Delgado, S., Vázquez-Sánchez, D., Martinez, B., Cabo, M.L., Rodriguez, A., Herrera, J.J., Garcia, P.: Incidence of staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 78(24), 8547–8554 (2012)

    Article  ADS  Google Scholar 

  6. Van Houdt, R., Michiels, C.W.: Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109(4), 1117–1131 (2010)

    Article  Google Scholar 

  7. Costerton, J.W., Stewart, P.S., Greenberg, E.P.: Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999)

    Article  ADS  Google Scholar 

  8. Adetunji, V., Odetokun, I.A.: Assessment of biofilm in E. coli O157:H7 and salmonella strains: influence of cultural conditions. Am. J. Food Technol. 7(10), 582–595 (2012)

  9. Cloete, T.E., Brözel, V.S., Holy, A.V.: Practical aspects of biofouling control in industrial water systems. Int. Biodeterior. Biodegrad. 29(3–4), 299–341 (1992)

    Article  Google Scholar 

  10. Repp, K.K., Menor, S.A., Pettit, R.K.: Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob. Agents Chemother. 49(7), 2612–2617 (2005)

    Article  Google Scholar 

  11. Swanton, E.M., Ctjrby, W.A., Lind, H.E.: Experiences with the Coulter counter in bacteriology. J. Appl. Microbiol. 10(5), 480–485 (1962)

    Article  Google Scholar 

  12. Zhang, W., McLamore, E.S., Garland, N.T., Leon, J.V.C., Banks, M.K.: A simple method for quantifying biomass cell and polymer distribution in biofilms. J. Microbiol. Methods 94(3), 367–374 (2013)

    Article  Google Scholar 

  13. Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M., Høiby, N.: Applying insights from biofilm biology to drug development – can a new approach be developed? Drug Discov. Nat. Rev. 12(10), 791–808 (2013)

    Article  Google Scholar 

  14. Jakobs, S., Subramaniam, V., Schönle, A., Jovin, T.M., Hell, S.W.: EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479(3), 131–135 (2000)

    Article  Google Scholar 

  15. Nwaneshiudu, A., Kuschal, C., Sakamoto, F.H., Anderson, R.R., Schwarzenberger, K., Young, R.C.: Introduction to confocal microscopy. J. Invest. Dermatol. 132(12), e3 (2012)

    Article  Google Scholar 

  16. Bakke, R., Olsen, P.Q.: Biofilm thickness measurements by light microscopy. J. Microbiol. Methods 5(2), 93–98 (1986)

    Article  Google Scholar 

  17. Choi, Y.C., Morgenroth, E.: Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci. Technol. 47(5), 69–76 (2003)

    Article  Google Scholar 

  18. Popescu, A., Doyle, R.J.: The gram stains after more than a century. Biotech. Histochem. 71(3), 145–151 (1996)

    Article  Google Scholar 

  19. Beveridge, T.J.: Use of the gram stain in microbiology. Biotech. Histochem. 76(3), 111–118 (2001)

    Article  Google Scholar 

  20. Nivens, D.E., Chambers, J.Q., Anderson, T.R., White, D.C.: Long-term, on-line monitoring of microbial biofilms using a quartz crystal microbalance. Anal. Chem. 65(1), 65–69 (1993)

    Article  Google Scholar 

  21. Pompilio, A., Crocetta, V., Pomponio, S., Fiscarelli, E., Di Bonaventura, G.: In vitro activity of colistin against biofilm by Pseudomonas aeruginosa is significantly improved under “cystic fibrosis-like” physicochemical conditions. Diagn. Microbiol. Infect. Dis. 82(4), 318–325 (2015)

    Article  Google Scholar 

  22. McDonough, R.T., Zheng, H., Alila, M.A., Goodisman, J., Chaiken, J.: Optical interference probe of biofilm hydrology: label-free characterization of the dynamic hydration behavior of native biofilms. J. Biomed. Opt. 22(3), 035003 (2017)

    Article  ADS  Google Scholar 

  23. Kummala, R., Brobbey, K.J., Haapanen, J., Mäkelä, J.M., Gunell, M., Eerola, E., Huovinen, P., Toivakka, M., Saarinen, J.J.: Antibacterial activity of silver and titania nanoparticles on glass surfaces. Adv. Nat. Sci: Nanosci. Nanotechnol. 10(1), 015012 (2019)

    ADS  Google Scholar 

  24. Li, J., Du, Q., Sun, C.: An improved box-counting method for image fractal dimension estimation. Pattern Recogn. 42(11), 2460–2469 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science under Grant No. 23K03884.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomichi Yokoi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoi, N., Yuasa, T., Niskanen, I. et al. Monitoring of the formation of biofilm inside a glass tube using light scattering patterns. Opt Rev 31, 225–235 (2024). https://doi.org/10.1007/s10043-024-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-024-00864-w

Keywords

Navigation