Skip to main content
Log in

Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

  • Special Section: Regular Paper
  • Biomedical Imaging and Sensing Conference (BISC2016), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamauchi, T., Iwai, H., Yamashita, Y.: Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy. Opt. Express 19, 5536–5550 (2011)

    Article  ADS  Google Scholar 

  2. Gloag, E.S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L.M., Mililli, L., Hunt, C., Lu, J., Osvath, S.R.: Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl. Acad. Sci. USA 110, 11541–11546 (2013)

    Article  ADS  Google Scholar 

  3. Dai, W., Fu, C., Raytcheva, D., Flanagan, J., Khant, H.A., Liu, X., Rochat, R.H., Haase-Pettingell, C., Piret, J., Ludtke, S.J., Nagayama, K., Schmid, M.F., King, J.A., Chiu, Wah: Visualizing virus assembly intermediates inside marinae cyanobacteria. Nature 502, 707–710 (2013)

    Article  ADS  Google Scholar 

  4. Zuo, C., Chen, Q., Qu, W., Asundi, A.: Noninterferometric single-shot quantitative phase microscopy. Opt. Lett. 38, 3538–3541 (2013)

    Article  ADS  Google Scholar 

  5. Kuś, A., Dudek, M., Kemper, B., Kujawińska, M., Vollmer, A.: Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt. 19, 046009 (2014)

    Article  ADS  Google Scholar 

  6. Kim, K., Yoon, H., Diez-Silva, M., Dao, M., Dasari, R.R., Park, Y.: High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2014)

    Article  ADS  Google Scholar 

  7. Poon, T.C., Doh, K., Schilling, B., Wu, M., Shinoda, K., Suzuki, Y.: Three-dimensional microscopy by optical scanning holography. Opt. Eng. 34, 1338–1344 (1995)

    Article  ADS  Google Scholar 

  8. Zhang, T., Yamaguchi, I.: Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)

    Article  ADS  Google Scholar 

  9. Funamizu, H., Tokuno, Y., Aizu, Y.: Estimation of spectral transmittance curves from RGB images in color digital holographic microscopy using speckle illuminations. Opt. Rev. 23, 535–543 (2016)

    Article  Google Scholar 

  10. Schnars, U., Jüptner, W.: Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, pp. 41–51. Springer, New York (2005)

    Google Scholar 

  11. Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1948)

    Article  ADS  Google Scholar 

  12. Ichioka, Y., Inuiya, M.: Direct phase detecting system. Appl. Opt. 11, 1507–1514 (1972)

    Article  ADS  Google Scholar 

  13. Yokota, M., Adachi, T.: Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode. Appl. Opt. 50, 3937–3946 (2011)

    Article  ADS  Google Scholar 

  14. Yeom, S., Javidi, B., Ferraro, P., Alfieri, D., De Nicola, S., Finizio, A.: Three-dimensional color object visualization and recognition using multi-wavelength computational holography. Opt. Express 15, 9394–9402 (2007)

    Article  ADS  Google Scholar 

  15. Tahara, T., Ito, K., Kakue, T., Fujii, M., Shimozato, Y., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Parallel phase-shifting digital holographic microscopy. Biemed. Opt. Express 1, 610–616 (2010)

    Article  Google Scholar 

  16. Tahara, T., Yonesaka, R., Yamamoto, S., Kakue, T., Xia, P., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy. IEEE J. Sel. Topics Quantum Electron. 18, 1387–1393 (2012)

    Article  Google Scholar 

  17. Awatsuji, Y., Sasada, M., Kubota, T.: Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 85, 1069–1071 (2004)

    Article  ADS  Google Scholar 

  18. Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  19. Sasada, M., Awatsuji, Y., Kubota, T.: Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels. In: 2004 ICO International Conference Optics and Photonics in Technology Frontier, Chiba, July 2004, pp. 357–358

  20. Millerd, J., Brock, N., Hayes, J., North-Morris, M., Novak, M., Wyant, J.: Pixelated phase-mask dynamic interferometer. Proc. SPIE 5531, 304–314 (2004)

    Article  ADS  Google Scholar 

  21. Kakue, T., Moritani, Y., Ito, K., Shimozato, Y., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography. Opt. Express 18, 9555–9560 (2010)

    Article  ADS  Google Scholar 

  22. Tahara, T., Awatsuji, Y., Kaneko, A., Koyama, T., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Parallel two-step phase-shifting digital holography using polarization. Opt. Rev. 17, 108–113 (2010)

    Article  Google Scholar 

  23. Sahoo, D., Seckbach, J.: The Algae World, p. 523. Springer, Dordrecht (2015)

    Book  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Challenging Exploratory Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Awatsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, T., Shinomura, M., Xia, P. et al. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system. Opt Rev 24, 206–211 (2017). https://doi.org/10.1007/s10043-016-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0279-6

Keywords

Navigation