Skip to main content
Log in

Comparison of reconstructed images between ghost imaging and Hadamard transform imaging

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We compared images reconstructed by three methods: ghost imaging (GI), Hadamard transform imaging (HTI), and scan-based imaging. Although GI and HTI use a bucket (or single channel) detector, GI has attracted more attention than HTI in recent years. Nevertheless, a direct comparison between them has not yet been conducted to the best of our knowledge. In the present work, we evaluate contrast ratios of images obtained from computational GI (CGI) and HTI under various signal-to-noise ratio (SNR) conditions. Our results indicate that HTI and CGI are useful in high- and low-SNR situations, respectively, although both methods have a similar performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belinsky, A.V., Klyshko, D.N.: Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. Sov. Phys. JETP 78, 259 (1994)

    ADS  Google Scholar 

  2. Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429 (1995)

    Article  ADS  Google Scholar 

  3. Bennink, R.S., Bentley, S.J., Boyd, R.W.: “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)

    Article  ADS  Google Scholar 

  4. Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A.: Ghost imaging with thermal light: comparing entanglement and classicalcorrelation. Phys. Rev. Lett. 93, 093602 (2004)

    Article  ADS  Google Scholar 

  5. Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78, 061802 (2008)

    Article  ADS  Google Scholar 

  6. Duan, D., Du, S., Xia, Y.: Multiwavelength ghost imaging. Phys. Rev. A 88, 053842 (2013)

    Article  ADS  Google Scholar 

  7. Welsh, S.S., Edgar, M.P., Jonathan, P., Sun, B., Padgett, M.J.: Multi-wavelength compressive computational ghost imaging. Proc. SPIE 8618, 86180I-1–86180I-6 (2013)

    Article  Google Scholar 

  8. Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340, 844 (2013)

    Article  ADS  Google Scholar 

  9. Bromberg, Y., Katz, O., Silberberg, Y.: Ghost imaging with a single detector. Phys. Rev. A 79, 053840 (2009)

    Article  ADS  Google Scholar 

  10. Ferri, F., Magatti, D., Gatti, A., Bache, M., Brambilla, E., Lugiato, L.A.: High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)

    Article  ADS  Google Scholar 

  11. Meyers, R.E., Deacon, K.S., Shih, Y.: Turbulence-free ghost imaging. Appl. Phys. Lett. 98, 111115 (2011)

    Article  ADS  Google Scholar 

  12. Chen, X.H., Liu, Q., Luo, K.H., Wul, L.A.: Lensless ghost imaging with true thermal light. Opt. Lett. 34, 695 (2009)

    Article  ADS  Google Scholar 

  13. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proc. IEEE 57, 58 (1969)

    Article  Google Scholar 

  14. Harwit, M., Sloane, N.J.A.: Hadamard Transform Optics. Academic Press Inc., Ltd., New York (1979)

    MATH  Google Scholar 

  15. Takhar, D., Laska, J.N., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Baraniuk, R.G.: A new compressive imaging camera architecture using optical-domain compression. Proc. SPIE 6065, 606509-1–606509-10 (2006)

    Google Scholar 

  16. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag. 25(2), 83–91 (2008)

    Article  ADS  Google Scholar 

  17. Treado, P.J., Morris, M.D.: A hadamard transform Raman microprobe. Appl. Spectrosc. 43, 190 (1989)

    Article  ADS  Google Scholar 

  18. Mei, E.W., Gu, W.F., Chen, G.Q., Zeng, Y.E.: The analysis of DNA and protein in a single-cell by Hadamard-transform microscope image. Fresenius J. Anal. Chem. 354, 250 (1996)

    Article  Google Scholar 

  19. Chan, K.W.C., O’Sullivan, M.N., Boyd, R.W.: Optimization of thermal ghost imaging: high-order correlations vs. background subtraction. Opt. Express 18, 5562 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Mizutani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibuya, K., Nakae, K., Mizutani, Y. et al. Comparison of reconstructed images between ghost imaging and Hadamard transform imaging. Opt Rev 22, 897–902 (2015). https://doi.org/10.1007/s10043-015-0138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0138-x

Keywords

Navigation