Skip to main content
Log in

Reflection, phase and en-face sectional imaging of scattering objects using quasi-single-shot wide-field optical coherence tomography

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We report a quasi-single-shot wide-field optical coherence tomography system that enables to measure the reflection, phase and en-face OCT images from the same setup using the glass jig. The jig consisting of a wedge glass substrate and a glue dot is contacted to the tissue surfaces, and the data within glue dot is used to reduce the phase noise of the interference signal. The reconstructed image size of the object was 4.0 mm × 4.3 mm. The standard deviation (STD) of the phase variation was minimized by 54 % and obtained to be 0.027 rad for the poke tissue. The corresponding STD in optical path length change was measured to be 1.4 nm. The refractive index of the water and poke tissue at the surface is also evaluated as 1.36 and 1.39, respectively, using reflection intensity images. Further, the en-face sectional images of the tissue sample are also measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhaduri, B., Edwards, C., Pham, H., Zhou, R., Nguyen, T.H., Goddard, L.L., Popescu, G.: Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photonics 6, 57 (2014)

    Article  Google Scholar 

  2. Joo, C., de Boer, J.F.: Spectral-domain optical coherence reflectometric sensor for highly sensitive molecular detection. Opt. Lett. 32, 2426 (2007)

    Article  ADS  Google Scholar 

  3. Akkin, T., Davé, D.P., Milner, T.E., Rylander III, H.G.: Detection of neural activity using phase-sensitive optical low-coherence reflectometry. Opt. Express 12, 2377 (2004)

    Article  ADS  Google Scholar 

  4. Ellerbee, A.K., Creazzo, T.L., Izatt, J.A.: Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. Opt. Express 15, 8115 (2007)

    Article  ADS  Google Scholar 

  5. Joo, C., Evans, C.L., Stepinac, T., Hasan, T., de Boer, J.F.: Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering. Opt. Express 18, 2858 (2010)

    Article  ADS  Google Scholar 

  6. Yaqoob, Z., Choi, W., Oh, S., Lue, N., Park, Y., Fang-Yen, C., Dasari, R.R., Badizadegan, K., Feld, M.S.: Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing. Opt. Express 17, 10681 (2009)

    Article  ADS  Google Scholar 

  7. Yaqoob, Z., Yamauchi, T., Choi, W., Fu, D., Dasari, R.R., Field, M.S.: Single-shot Full-field reflection phase microscopy. Opt. Express 19, 7588 (2011)

    Article  ADS  Google Scholar 

  8. Creath, K., Goldstein, G.: Dynamic quantitative phase imaging for biological objects using a pixelated phase mask. Biomed. Opt. Express 3, 2866 (2012)

    Article  Google Scholar 

  9. Drexler, W., Fujimoto, J.G.: Optical coherence tomography, technology and applications. Springer, Berlin Heidelberg (2008)

    Book  Google Scholar 

  10. Tomlins, P.H., Wang, R.K.: Theory, developments and applications of optical coherence tomography. J. Phys. D. Appl. Phys. 38, 2519 (2005)

    Article  ADS  Google Scholar 

  11. Liu, B., Brezinski, M.E.: Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J. Biomed. Opt. 12, 044007 (2007)

    Article  ADS  Google Scholar 

  12. Choma, M.A., Ellerbee, A.K., Yang, C., Creazzo, T.L., Izatt, J.A.: Spectral-domain phase microscopy. Opt. Lett. 30, 1162 (2005)

    Article  ADS  Google Scholar 

  13. Helderman, F., Haslam, B., de Boer, J.F., de Groot, M.: Three-dimensional intracellular optical coherence phase imaging. Opt. Lett. 38, 431 (2013)

    Article  ADS  Google Scholar 

  14. Sarunic, M.V., Weinberg, S., Izat, J.A.: Full-field swept-source phase microscopy. Opt. Lett. 31, 1462 (2006)

    Article  ADS  Google Scholar 

  15. Anna, T., Srivastava, V., Mehta, D.S., Shakher, C.: High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells. Appl. Opt. 50, 6343 (2011)

    Article  ADS  Google Scholar 

  16. Choi, W.J., Potsaid, B., Jayaraman, V., Baumann, B., Grulkowski, I., Liu, J.J., Lu, C.D., Cable, A.E., Huang, D., Duker, J.S., Fujimoto, J.G.: Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt. Lett. 38, 338 (2013)

    Article  ADS  Google Scholar 

  17. Hrebesh, M.S., Sato, M.: Real-time single-shot full-field OCT based on dual-channel phase stepper optics and 2-D quaternionic analytic signal processing. Proc. SPIE 71681, 71681H1 (2009)

    Google Scholar 

  18. Anna, T., Mehta, D.S., Sato, M., Jr. of Modern Opt. http://www.tandfonline.com/doi/full/10.1080/09500340.2014.995734. Accessed 9 Jan 2015

  19. Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49, 2844 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  20. Tuchin, V.: Tissue optics, light scattering methods and instruments for medical diagnosis, tutorial texts in optical engineering, vol. TT38, SPIE press (2000)

Download references

Acknowledgments

This work is supported by the grant-in-aid for Japan Society for the Promotion of Science Fellows JSPS KAKENHI Grant Number 2503044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulsi Anna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anna, T., Kimura, S., Mehta, D.S. et al. Reflection, phase and en-face sectional imaging of scattering objects using quasi-single-shot wide-field optical coherence tomography. Opt Rev 22, 706–716 (2015). https://doi.org/10.1007/s10043-015-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0124-3

Keywords

Navigation