Skip to main content
Log in

Coherent diffractive imaging with an aperture-array filter: relaxation of the aperture’s size condition

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

An improvement of the noniterative phase-retrieval method using an aperture-array filter in coherent diffractive imaging is proposed, in which the condition of the aperture’s size can be relaxed. In the previous method, we used a Gaussian approximation of the aperture function of the filter, which is satisfied if the Fresnel number N F concerning each aperture of the filter is <1. Using the improved method, the condition of the Fresnel number is extended to 1 < N F  < 2. This enables us to use an array filter with a larger aperture size than that for N F  < 1, or to more flexibly set the distance parameters of the measurement system. This improvement is useful for the fabrication of the aperture-array filter, particularly in cases of X-ray, electron, and atomic waves, because the smaller extent of the aperture is needed for phase retrieval with decreasing wavelength. Using computer simulations, it is demonstrated that the performance of object reconstruction by the improved method is almost equal to that by the previous method with the same system parameters except for the size of each aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miao, J., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

    Article  ADS  Google Scholar 

  2. Chapman, H.N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S.P., Cui, C., Howells, M.R., Rosen, R., He, H., Spence, J.C.H., Weierstall, U., Beetz, T., Jacobsen, C., Shapiro, D.: High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006)

    Article  ADS  Google Scholar 

  3. Nishino, Y., Takahashi, Y., Imamoto, N., Ishikawa, T., Maeshima, K.: Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys. Rev. Lett. 102, 018101 (2009)

    Article  ADS  Google Scholar 

  4. Kamimura, O., Maehara, Y., Dobashi, T., Kobayashi, K., Kitaura, R., Shinohara, H., Shioya, H., Gohara, K.: Low voltage electron diffractive imaging of atomic structure in single-wall carbon nanotubes. Appl. Phys. Lett. 98, 174103 (2011)

    Article  ADS  Google Scholar 

  5. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  6. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  7. Faulkner, H.M.L., Rodenburg, J.M.: Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903-1-4 (2004)

    Article  ADS  Google Scholar 

  8. Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)

    Article  ADS  Google Scholar 

  9. Gureyev, T.E., Roberts, A., Nugent, K.A.: Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials. J. Opt. Soc. Am. A 12, 1932–1941 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  10. Nakajima, N.: Phase retrieval from Fresnel zone intensity measurements by use of Gaussian filtering. Appl. Opt. 37, 6219–6226 (1998)

    Article  ADS  Google Scholar 

  11. Nakajima, N.: Noniterative phase retrieval from a single diffraction intensity pattern by use of an aperture array. Phys. Rev. Lett. 98, 223901 (2007)

    Article  ADS  Google Scholar 

  12. Nakajima, N.: Lensless coherent imaging by a deterministic phase retrieval method with an aperture-array filter. J. Opt. Soc. Am. A 25, 742–750 (2008)

    Article  ADS  Google Scholar 

  13. Nakajima, N.: Experimental verification of coherent diffractive imaging by a direct phase retrieval method with an aperture-array filter. Opt. Lett. 36, 2284–2286 (2011)

    Article  ADS  Google Scholar 

  14. Nakajima, N.: Coherent diffractive imaging beyond the Fresnel approximation using a deterministic phase-retrieval method with an aperture-array filter. Appl. Opt. 52, C1–C10 (2013)

    Article  MathSciNet  Google Scholar 

  15. Nakajima, N.: Coherent diffractive imaging of atomic-size objects by means of a deterministic phase-retrieval method. Phys. Rev. A 89, 053819 (2014)

    Article  ADS  Google Scholar 

  16. Nakajima, N.: Phase-retrieval system using a shifted Gaussian filter. J. Opt. Soc. Am. A 15, 402–406 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Nakajima, N., Saleh, B.E.A.: Reconstruction of a vibrating object from its time-averaged image intensities by the use of exponential filtering. Appl. Opt. 35, 4581–4588 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (Grant No. 26390081) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuharu Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, N. Coherent diffractive imaging with an aperture-array filter: relaxation of the aperture’s size condition. Opt Rev 22, 753–761 (2015). https://doi.org/10.1007/s10043-015-0121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0121-6

Keywords

Navigation