Skip to main content
Log in

Effective small target enhancement and detection in infrared images using saliency map and image intensity

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we propose a small target enhancement and detection method for infrared (IR) images in complex backgrounds. The detection of targets obtained from infrared search and track systems is very important in the military field. However, the accurate detection of small targets in complex backgrounds with a variety of clutter and sensor noise remains difficult. Therefore, with the aim of enhancing and detecting small targets in complex backgrounds, the proposed method applies a saliency map to enhance targets using their shape and temperature information. Additionally, a target detection technique is proposed that uses image intensity and distance information. The experimental results indicate that the proposed method can efficiently enhance and detect targets in various IR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, S.H., Lee, J.H.: Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recogn. 45, 393 (2012)

    Article  Google Scholar 

  2. Aviram, G., Rotman, S.R.: Analyzing the improving effect of modeled histogram enhancement on human target detection performance of infrared images. Infrared Phys. Technol. 41, 163 (2000)

    Article  ADS  Google Scholar 

  3. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9, 889 (2000)

    Article  ADS  Google Scholar 

  4. Wang, B.J., Liu, S.Q., Li, Q., Zhou, H.X.: A real-time contrast enhancement algorithm for infrared images based on plateau histogram. Infrared Phys. Technol. 48, 77 (2006)

    Article  ADS  Google Scholar 

  5. Bai, X., Zhou, F., Xie, Y.: New class of top-hat transformation to enhance infrared small targets. J. Electron. Imaging 17, 030501 (2008)

    Article  ADS  Google Scholar 

  6. Kim, S.H.: Double layered-background removal filter for detecting small infrared targets in heterogenous backgrounds. J. Infrared Millimeter Terahertz Waves 32, 79 (2011)

    Article  ADS  Google Scholar 

  7. Kim, S.H., Yang, Y.Y., Lee, J.Y., Park, Y.C.: Small target detection utilizing robust methods of the human visual system for IRST. J. Infrared Millimeter Terahertz Waves 30, 994 (2009)

    Article  Google Scholar 

  8. Ardouin, J.P.: Point source detection based on point spread function symmetry. Opt. Eng. 32, 2156 (1993)

    Article  ADS  Google Scholar 

  9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn., p. 235. Pearson Prentice Hall, New Jersey (2002)

    Google Scholar 

  10. Oten, R., de Figueiredo, R.J.P.: Adaptive alpha-trimmed mean filters under deviations from assumed noise model. IEEE Trans. Image Process. 13(5), 627 (2004)

    Article  ADS  Google Scholar 

  11. Xiong, X., Choi, B.J.: Comparative analysis of detection algorithms for corner and blob features in image processing. Int. J. Fuzzy Logic Intell. Syst. 13, 284 (2013)

    Article  Google Scholar 

  12. Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int. J. Comput. Vision 11, 283 (1993)

    Article  Google Scholar 

  13. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vision 30, 79 (1998)

    Article  Google Scholar 

  14. Lindeberg, T.: Image matching using generalized scale-space interest points. Scale Space Var. Methods Comput. Vision Lect. Notes Comput. Sci. 7893, 355 (2013)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91 (2004)

    Article  Google Scholar 

  16. Catarious Jr, D.M., Baydush, A.H., Floyd Jr, C.E.: Characterization of difference of Gaussian filters in the detection of mammographic regions. Med. Phys. 33, 4104 (2006)

    Article  Google Scholar 

  17. Kim, D.S.: A blob scale detection method using profile characteristics. J. KIISE Softw. Appl. 39(2), 133 (2012) (in Korean)

    Google Scholar 

  18. Zhang, P., Li, J.: Neural-network-based single-frame detection of dim spot target in infrared images. Opt. Eng. 46, 076401 (2007)

    Article  ADS  Google Scholar 

  19. Wang, X., Lv, G., Xu, L.: Infrared dim target detection based on visual attention. Infrared Phys. Technol. 55, 513 (2012)

    Article  ADS  Google Scholar 

  20. Birch, P., Mitra, B., Bangalore, N.M., Rehman, S., Young, R., Ctatwin, C.: Approximate bandpass and frequency response models of the difference of Gaussian filter. Opt. Commun. 283, 4942 (2010)

    Article  ADS  Google Scholar 

  21. Pukelsheim, F.: The three sigma rule. Am. Stat. 48, 88 (1994)

    MathSciNet  Google Scholar 

  22. Sun, S.G., Park, H.W.: Segmentation of forward-looking infrared image using fuzzy thresholding and edge detection. Opt. Eng. 40, 2638 (2001)

    Article  ADS  Google Scholar 

  23. Lee, H.Y., Kim, T.H., Park, K.H.: Target extraction in forward-looking infrared images using fuzzy thresholding via local region analysis. Opt. Rev. 18(5), 383 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (No. NRF-2013R1A1A2007984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilhoum Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Gu, E. & Park, K. Effective small target enhancement and detection in infrared images using saliency map and image intensity. Opt Rev 22, 659–668 (2015). https://doi.org/10.1007/s10043-015-0110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0110-9

Keywords

Navigation