Skip to main content
Log in

Investigating the impact of the properties of pilot points on calibration of groundwater models: case study of a karst catchment in Rote Island, Indonesia

Investigation de l’impact des propriétés de points pilotes sur la calibration des modèles hydrogéologiques: un cas d’étude d’un bassin versant karstique dans l’île Rote, Indonésie

Investigación del impacto de las propiedades de los puntos de prueba en la calibración de modelos de agua subterránea: estudio de caso de una cuenca kárstica en Rote Island, Indonesia

试点特性对地下水模型校准的影响调查: 印度尼西亚罗地岛一个岩溶汇水区的研究实例

Investigando o impacto das propriedades de pontos piloto na calibração de modelos de águas subterrâneas: estudo de caso de uma bacia cárstica na Ilha Rote, Indonésia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A robust configuration of pilot points in the parameterisation step of a model is crucial to accurately obtain a satisfactory model performance. However, the recommendations provided by the majority of recent researchers on pilot-point use are considered somewhat impractical. In this study, a practical approach is proposed for using pilot-point properties (i.e. number, distance and distribution method) in the calibration step of a groundwater model. For the first time, the relative distance–area ratio (d/A) and head-zonation-based (HZB) method are introduced, to assign pilot points into the model domain by incorporating a user-friendly zone ratio. This study provides some insights into the trade-off between maximising and restricting the number of pilot points, and offers a relative basis for selecting the pilot-point properties and distribution method in the development of a physically based groundwater model. The grid-based (GB) method is found to perform comparably better than the HZB method in terms of model performance and computational time. When using the GB method, this study recommends a distance–area ratio of 0.05, a distance–x-grid length ratio (d/X grid) of 0.10, and a distance–y-grid length ratio (d/Y grid) of 0.20.

Résumé

Une configuration robuste de points pilotes dans l’étape de paramétrisation d’un modèle est. cruciale pour obtenir de manière précise une performance satisfaisante d’un modèle. Cependant, les recommandations fournies par la majorité des recherches récentes sur l’utilisation de point-pilote sont considérées comme peu pratiques. Dans cette étude, une approche pratique est. proposée pour utiliser les propriétés des points-pilotes (ex. nombre, distance et méthode de distribution) dans l’étape de calibration d’un modèle hydrogéologique. Pour la première fois, le rapport de la distance relative et la surface (d/A) et la méthode basée sur la zonation de la charge hydraulique (HZB) sont introduites, pour attribuer les points pilotes dans le domaine du modèle en introduisant un rapport de zone convivial. Cette étude donne un aperçu du compromis entre la maximisation et la limitation du nombre de points pilotes, et offre une base relative pour la sélection des propriétés des points pilotes et de la méthode de distribution dans le développement d’un modèle hydrogéologique à base physique. La méthode reposant sur une grille (GB) fournit des résultats meilleurs que la méthode HZB en termes de performance du modèle et de temps de calcul. En utilisant la méthode GB, cette étude recommande un rapport distance-surface de 0.05, un rapport distance–longueur x de la grille (d/X grille) de 0.10, et un rapport distance-longueur y de la grille (d/Y grille) de 0.20.

Resumen

Una configuración robusta de puntos de prueba en la etapa de parametrización de un modelo es crucial para obtener con precisión un rendimiento satisfactorio del modelo. Sin embargo, las recomendaciones proporcionadas por la mayoría de los investigadores recientes sobre el uso de puntos de prueba se consideran en cierto modo impracticable. En este estudio, se propone un enfoque práctico para el uso de propiedades de los puntos de prueba (es decir, el número, la distancia y el método de distribución) en la etapa de calibración de un modelo de agua subterránea. Por primera vez, se introducen la relación distancia – área (d/A) y el método basado en la zonificación de la carga (HZB), para asignar puntos de prueba en el dominio del modelo mediante la incorporación de una relación favourable del usuario. Este estudio proporciona algunas ideas sobre el equilibrio entre la maximización y la restricción del número de puntos de prueba, y ofrece una base relativa para la selección de las propiedades del punto de pruebas y el método de distribución en el desarrollo de un modelo de agua subterránea de base física. El método basado en grillas (GB) se encuentra para desempeñarse comparativamente mejor que el método HZB en términos de rendimiento del modelo y tiempo computacional. Cuando se utiliza el método GB, este estudio recomienda una relación de distancia-área de 0.05, una relación de longitud de la grilla de una distancia-x (d/X grid) de 0.10 y una relación de longitud de distancia de la grilla-y (d/Y grid) de 0.20.

摘要

在模型参数化步骤中试点的正确配置对于准确获取满意的模型性能至关重要。然而,近年来大多数研究者针对试验点操作推荐的方法多少有点不切实际。在本研究中,利提出了一种实用的方法,即在地下水模型校准步骤中采用试验点特性(也就是数量、距离和分布方法)。第一次引进了相关距离-面积比(d/A)和基于水头-分区(HZB)方法,通过合并用户友好带比把试验点分配到模型域中。本研究提出了一些最大化和限制试验点数量之间的折中方面的认识,提供了选择试验点特性的相对基础和开发基于物理上地下水模型的分布方法。发现在模型性能和计算时间上,基于网格(GB)方法比HZB方法要好。使用GB方法时,本研究推荐距离-面积比0.05、距离-x网格长度比(d/X grid)0.10及距离-y网格长度比(d/Y grid) 0.20。

Resumo

Uma configuração robusta de pontos piloto na fase de parametrização de um modelo é crucial para obter com precisão um desempenho satisfatório do modelo. No entanto, recentes recomendações providenciadas pela maioria dos pesquisadores sobre o uso de pontos piloto são consideradas um tanto quanto impraticáveis. Neste estudo, propõe-se uma abordagem prática para o uso de propriedades de pontos piloto (p. ex. número, distância e método de distribuição) na fase de calibração de um modelo de águas subterrâneas. Pela primeira vez, são introduzidos os métodos de relação distância-área relativa (d/A) e baseado em carga-zonação (BCZ) para atribuir pontos piloto ao domínio do modelo, incorporando uma relação de zona de fácil utilização. Este estudo fornece algumas ideias sobre o equilíbrio entre maximizar e restringir o número de pontos piloto e oferece uma base relativa para selecionar as propriedades de pontos piloto e método de distribuição no desenvolvimento de um modelo fisicamente embasado de águas subterrâneas. O método baseado em grade (BG) é, comparativamente, melhor executado do que o método BCZ em termos de desempenho do modelo e de tempo computacional. Quando se utiliza o método BG, este estudo recomenda uma relação distância-área de 0.05, uma razão distância-x-grade de comprimento (d/X grade) de 0.10 e uma relação distância-y-grade de comprimento (d/Y grade) de 0.20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51(4):641–650. doi:10.1111/j.1745-6584.2012.01003.x

    Google Scholar 

  • Alcolea A, Carrera J, Medina A (2006) Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Adv Water Resour 29(11):1678–1689. doi:10.1016/j.advwatres.2005.12.009

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, 333 pp

  • Arsyad M, Ihsan N, Tiwow VA (2015) Estimation of underground river water availability based on rainfall in the Maros karst region, South Sulawesi. Conference Proceedings, International Seminar on Mathematics, Science, and Computer Science Education (MSCSE 2015), Bandung, Indonesia, 17 October 2015. doi: 10.1063/1.4941176

  • Baalousha HM (2016) Development of a groundwater flow model for the highly parameterized Qatar aquifers. Model Earth Syst Environ 2(2):1–11. doi:10.1007/s40808-016-0124-8

    Google Scholar 

  • BAPPEDA (2009) Rencana tata ruang wilayah (RTRW) Kabupaten Rote Ndao: Penggunaan lahan eksisting [Land use planning of Rote Ndao Regency: existing land use, Bureau of Regional Spatial Planning and Development, Rote Ndao Regency]. Badan Perencanaan Pembangunan Daerah Kabupaten Rote, lhokseumawe, Indonesia, 35 pp

  • Boulton NS (1963) Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Proc Inst Civ Eng, London 26(3):469–482. doi:10.1680/iicep.1963.10409

    Google Scholar 

  • Bras RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, Reading, MA

    Google Scholar 

  • BYU (2014) Groundwater modeling system (GMS) version 9.2.9. Environmental Modeling Research Laboratory, Brigham Young University, Provo, UT, USA

    Google Scholar 

  • Carniato L, Schoups G, van de Giesen N, Seuntjens P, Bastiaens L, Sapion H (2015) Highly parameterized inversion of groundwater reactive transport for a complex field site. J Contam Hydrol 173:38–58. doi:10.1016/j.jconhyd.2014.12.001

    Article  Google Scholar 

  • Certes C, de Marsily G (1991) Application of the pilot point method to the identification of aquifer transmissivities. Adv Water Resour 14(5):284–300

    Article  Google Scholar 

  • Chen F, Wiese B, Zhou Q, Kowalsky MB, Norden B, Kempka T, Birkholzer JT (2014) Numerical modeling of the pumping tests at the Ketzin pilot site for CO2 injection: model calibration and heterogeneity effects. Int J Greenh Gas Control 22:200–212. doi:10.1016/j.ijggc.2014.01.003

    Article  Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Pet Geol Bull 54(2):207–250

    Google Scholar 

  • Christensen S, Doherty J (2008) Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Adv Water Resour 31(4):674–700. doi:10.1016/j.advwatres.2008.01.003

    Article  Google Scholar 

  • Davis SN (1969) Porosity and permeability of natural materials in flow through porous media. Academic, New York

    Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water 41(2):170–177. doi:10.1111/j.1745-6584.2003.tb02580.x

    Article  Google Scholar 

  • Doherty J (2004) PEST: model-independent parameter estimation user manual, 5th edn. Watermark, Brisbane, Australia

    Google Scholar 

  • Doherty JE, Hunt RJ (2010) Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. US Geol Surv Sci Invest Rep 2010-5169, 59 pp

  • Doherty JE, Fienen MN, Hunt RJ (2010) Approaches to highly parameterized inversion: pilot-point theory guidelines, and research directions. US Geol Surv Sci Invest Rep 2010-5168, 44 pp

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • Eiche E, Hochschild M, Haryono E, Neumann T (2016) Characterization of recharge and flow behaviour of different water sources in Gunung Kidul and its impact on water quality based on hydrochemical and physico-chemical monitoring. Appl Water Sci 6(3):293–307

    Article  Google Scholar 

  • ESRI (1999) ArcView GIS version 3.2. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Fienen MN, Muffels CT, Hunt RJ (2009) On constraining pilot point calibration with regularization in PEST. Ground Water 47(6):835–844. doi:10.1111/j.1745-6584.2009.00579.x

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gallegos JJ, Hu BX, Davis H (2013) Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP. Hydrogeol J 21(8):1749–1760. doi:10.1007/s10040-013-1046-4

    Article  Google Scholar 

  • Gómez-Hernánez JJ, Sahuquillo A, Capilla J (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: I, theory. J Hydrol 203(1):162–174. doi:10.1016/S0022-1694(97)00098-X

    Article  Google Scholar 

  • Gorr WL, Kurland KS (2016) GIS tutorial 1: basic workbook for ArcGIS 10.3.X. Esri, Redlands, CA

    Google Scholar 

  • Hamilton W (1979) Tectonics of the Indonesian Region. US Geol Surv Prof Pap 1078, pp 33–41

  • Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey modular ground-water model, the Ground-Water Flow Process. USGS Techniques and Methods 6-A16, USGS, Reston, VA, 253 pp

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92, 127 pp

  • Harris R (2011) The nature of the Banda Arc–Continent collision in the Timor Region. In: Brown D, Ryan PD (eds) Arc-continent collision. Berlin, pp 163–211

  • Haryono E, Day M (2004) Landform differentiation within the Gunung Kidul Kegelkarst, Java, Indonesia. J Cave Karst Stud 66(2):62–69

    Google Scholar 

  • Hill MC (1990) Preconditioned conjugate-gradient 2 (pcg2), a computer program for solving ground-water flow equations. US Geol Surv Water Resour Invest Rep 90-4048, 31 pp

  • Hu B, Teng Y, Cheng L (2015) The application of the pilot points in groundwater numerical inversion model. Paper presented at the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015

  • Hudak PF (2010) Principles of hydrogeology, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Jardani A, Dupont JP, Revil A, Massei N, Fournier M, Laignel B (2012) Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. J Hydrol 472–473:287–300. doi:10.1016/j.jhydrol.2012.09.031

    Article  Google Scholar 

  • Johnson AI (1967) Specific yield: compilation of specific yields for various materials. US Geol Surv Water Suppl Pap 1662-D, 74 pp

  • Knowling MJ, Werner AD, Herckenrath D (2015) Quantifying climate and pumping contributions to aquifer depletion using a highly parameterised groundwater model: Uley South Basin (South Australia). J Hydrol 523:515–530. doi:10.1016/j.jhydrol.2015.01.081

    Article  Google Scholar 

  • Kowalsky MB, Finsterle S, Williams KH, Murray C, Commer M, Newcomer D, Englert A, Steefel CI, Hubbard SS (2012) On parameterization of the inverse problem for estimating aquifer properties using tracer data. Water Resour Res 48(6):1–25. doi:10.1029/2011WR011203

    Article  Google Scholar 

  • Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. J Hydrol 520:342–355. doi:10.1016/j.jhydrol.2014.11.055

    Article  Google Scholar 

  • Malik P (2015) Evaluating discharge regimes of Karst Aquifer. In: Stevanović Z (eds) Karst aquifers: characterization and engineering. Springer, Cham, Switzerland

  • de Marsily G (1978) De l’identification des systémes hydrogéologiques [The identification of hydrological systems]. PhD Thesis, Université Paris VI, France

  • de Marsily G (1984) Spatial variability of properties in porous media: a stochastic approach. In: Bear J, Corapcioglu MY (eds) NATO ASI Series E. Boston, MA, pp 719–769

  • Martínez-Santos P, Andreu JM (2010) Lumped and distributed approaches to model natural recharge in semiarid karst aquifers. J Hydrol 388(3–4):389–398. doi:10.1016/j.jhydrol.2010.05.018

    Article  Google Scholar 

  • Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639. doi:10.1016/j.jhydrol.2014.02.024

    Article  Google Scholar 

  • McDonald M, Harbaugh A (1988) A modular three-dimensional finite-difference groundwater flow model. USGS, book 6, chap A1, US Geological Survey, Reston, VA, 258 pp

  • McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161. doi:10.1029/96WR00160

    Article  Google Scholar 

  • Moeck C, Hunkeler D, Brunner P (2015) Tutorials as a flexible alternative to GUIs: an example for advanced model calibration using pilot points. Environ Model Softw 66:78–86. doi:10.1016/j.envsoft.2014.12.018

    Article  Google Scholar 

  • Moriasi D, Arnold J, van Liew M, Bingner R, Harmel R, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Panagopoulos G (2012) Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece. Environ Earth Sci 67(7):1877–1889. doi:10.1007/s12665-012-1630-2

    Article  Google Scholar 

  • PAT (1992) Laporan pemboran sumur eksplorasi/test well di Pulau Rote dengan total kedalaman 762 m/10 sumur oleh CV. Citra Utama, Semarang [Report on groundwater exploration-test well in Rote Island with total depth of 762 m/10 wells by CV. Citra Utama, Semarang], Dept. Pekerjaan Umum, Proyek Irigasi Nusa Tenggara Timur - Kantor Pengelolaan Air Tanah (PAT) NTT Wilayah Barat, Indonesia, 103 pp

  • Roosmawati N, Harris R (2009) Surface uplift history of the incipient Banda arc-continent collision: geology and synorogenic foraminifera of Rote and Savu Islands, Indonesia. Tectonophysics 479(1–2):95–110. doi:10.1016/j.tecto.2009.04.009

    Article  Google Scholar 

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276(1–4):137–158. doi:10.1016/S0022-1694(03)00064-7

    Article  Google Scholar 

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of lime-stone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14(2):93–128. doi:10.1016/0022-1694(71)90001-1

    Article  Google Scholar 

  • Vacher HL, Mylroie JE (2002) Eogenetic karst from the perspective of an equivalent porous medium. Carbonates Evaporites 17(2):182–196. doi:10.1007/bf03176484

    Article  Google Scholar 

  • Viessman W, Lewis GL (2003) Introduction to hydrology, 5th edn. Pearson, Upper Saddle River, NJ

    Google Scholar 

  • Voss CI (2011) Editor’s message: Groundwater modeling fantasies—part 2, down to earth. Hydrogeol J 19(8):1455–1458. doi:10.1007/s10040-011-0790-6

    Article  Google Scholar 

  • Wen X-H, Lee S, Yu T (2006) Simultaneous integration of pressure, water cut, 1 and 4-D seismic data in geostatistical reservoir modeling. Math Geol 38(3):301–325

    Article  Google Scholar 

  • Wiese B, Nützmann G (2011) Calibration of spatial aquitard distribution using hydraulic head changes and regularisation. J Hydrol 408(1–2):54–66. doi:10.1016/j.jhydrol.2011.07.015

    Article  Google Scholar 

  • Woessner WW, Anderson MP (1992) Selecting calibration values and formulating calibration targets for ground-water flow simulations. Paper presented at the NWWA Conference on Solving Groundwater Problems with Models, Battelle, Columbus, OH

  • Worthington SRH, Schindel GM, Alexander ECJ (2001) Aquifer-scale properties for hydraulic characterization of carbonate aquifers. Paper presented at the Geological Society of America Meetings, Boston, MA, 6 Nov 2001

  • Yihdego Y, Becht R (2013) Simulation of lake–aquifer interaction at Lake Naivasha, Kenya using a three-dimensional flow model with the high conductivity technique and a DEM with bathymetry. J Hydrol 503:111–122. doi:10.1016/j.jhydrol.2013.08.034

    Article  Google Scholar 

  • Yoon H, McKenna SA (2012) Highly parameterized inverse estimation of hydraulic conductivity and porosity in a three-dimensional, heterogeneous transport experiment. Water Resour Res 48(10):1–17. doi:10.1029/2012WR012149

    Article  Google Scholar 

  • Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi:10.1016/j.advwatres.2013.10.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Australian government for supporting the research through the Australia Awards Scholarship (AAS) program in the Swinburne University of Technology, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dua K. S. Y. Klaas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaas, D.K.S.Y., Imteaz, M.A. Investigating the impact of the properties of pilot points on calibration of groundwater models: case study of a karst catchment in Rote Island, Indonesia. Hydrogeol J 25, 1703–1719 (2017). https://doi.org/10.1007/s10040-017-1590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1590-4

Keywords

Navigation