Skip to main content
Log in

Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

Écoulement des eaux souterraines dans un aquifère transfrontalier fracturé et l’importance de la modélisation régionale: le cas de la ville de Querétaro, au Mexique

Flujo de aguas subterráneas en un acuífero transfronterizo dominado por fallas y la importancia de modelación numérica a nivel regional: el caso de la ciudad de Querétaro, México

跨界断层主导的含水层中的地下水流及区域模拟的重要性:墨西哥克雷塔罗市的研究实例

Fluxo das águas subterrâneas em um aquífero transfronteiriço dominado por falhas e a importância da modelagem regional: o caso da cidade de Querétaro, México

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer’s potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

Résumé

La ville de Querétaro, située près de la frontière politique entre les états méxicains de Querétaro et Guanajuato, dépend des eaux souterraines comme seule source de provision. L’extraction de l’eau souterraine dans la ville a augmenté de 21 × 106 m3/an en 1970 à 104 × 106 m3/an en 2010, engendrant une baisse du niveau piézométrique jusqu’a 100 m dans certaines parties de l’aquifère. Un modèle numérique tridimensionnel des débits des eaux souterraines a été développé. Il représente l’évolution historique des niveaux piézométrique de l’aquifère et est utilisé pour simuler leur évolution suivant deux scénarios: (1) une réduction de 40 % du taux d’extraction en eau public des puits d’approvisionnement début 2011 (réduisant ainsi l’extraction à 62 × 106 m3 /an), et (2) une réduction supplémentaire en 2021 à 1 × 106 m3/an. Les résultats de la modélisation prévoient une récupération temporaire des niveaux piézométriques après la réduction de 40 % en 2011, avec un retour aux niveaux de 2010 d’ici 2020. Si le scénario 2 est mis en œuvre en 2021, l’aquifère mettra près de 30 ans pour récupérer les niveaux piézométriques de 1995. Le modèle montre également que les puits situés dans la ville de Querétaro ont commencé à extraire de l’eau d’une partie de l’aquifère sous l’État de Guanajuato dés les années 1970, montrant ainsi que les limites administratives utilisés au Mexique pour étudier et développer les ressources en eau sont inappropriées, et devrait être remplacées par les limites physiques de l’aquifère. Une approche régionale des études sur les aquifères est nécessaire pour comprendre adéquatement la dynamique d’écoulement des eaux souterraines.

Resumen

La ciudad de Querétaro, ubicada cerca del límite politico de los estados mexicanos de Querétaro y Guanajuato depende del agua subterránea como única fuente de abastecimiento de agua potable. La extracción de agua subterránea en la ciudad ha incrementado de 21 × 106 m3/año en 1970 to 104 × 106 m3/año en 2010, lo que ha ocasionado un abatimiento de 100 m en algunas partes del acuífero. En este trabajo se presenta el desarrollo de un modelo numérico tridimensional de aguas subterráneas, el cual representa la evolución histórica de los niveles potenciométricos y que es utilizado para similar el efecto en el acuífero de dos escenarios: (1) una reducción del 40 % en las tasas de extracción de los pozos con uso público-urbano al inicio de 2011 (por lo cual se reduce la extracción a 62 × 106 m3/año), y (2) una reducción adicional en 2021 con la cual se extraerán solamente 1 × 106 m3/año. Los resultados de la modelación indicant que se tendrá una recuperación temporal de los niveles potenciométricos cuando se reduce la tasa de extracción en un 40 % en 2011, ya que para el 2020 los niveles son iguales a los registrados en el 2010. Si el escenario 2 se implementa en el 2021, el acuífero tardará cerca de 30 años para recuperarse y alcanzar los niveles de 1995. El modelo también muestra que los pozos de extracción ubicados en Querétaro comenzaron a extraer agua de la zona del acuífero que se ubica en Guanajuato a finales de la década de 1970, lo cual demuestra que los límites administrativos utilizados en México para estudiar y utilizar recursos hídricos son inapropiadas, por lo cual se sugiere utilizar límites físicos. El presente estudio muestra que se requiere una visión regional para estudiar los acuíferos y lograr así una mejor comprehensión de la dinámica del flujo de agua subterránea.

摘要

克雷塔罗市位于墨西哥克雷塔罗州和瓜纳华托州边界附近,依赖地下水作为唯一的供水水源。城市的抽水量从1970年的21 × 106 m3/年增加到2010年的104 × 106 m3/年,致使部分含水层水位下降了100米。开发了代表含水层压力水面砾石演化的三维数值地下水模型,并用来模拟两种方案的效果:(1)2011年早期公共供水井抽取量减少40%(因此减少抽取量62 × 106 m3/年),及(2)2021年进一步减少到1 × 106 m3/年。模拟结果显示,2011年早期40%的减少后压力水面有临时的恢复,但到2020年又恢复到2010年的水位。如果在2021年实施方案(2),含水层需要将近30年恢复到模拟的1995年的水平。模型也显示,位于克雷塔罗市的的水井从20世纪70年代开始从瓜纳华托州之下的含水层部分区域抽水,因此,采用墨西哥的管理边界研究和开发水资源是不合适的,而应该考虑物理边界。需要研究含水层的区域方法以便充分地了解地下水水流动力学。

Resumo

A cidade de Querétaro, localizada próxima à fronteira política dos dois estados mexicanos de Querétaro e Guanajuato, depende das águas subterrâneas como sua única fonte de água. Extração de águas subterrâneas na cidade cresceu de 21 × 106 m3/ano em 1970 para 104 × 106 m3/ano em 2010, com um rebaixamento associado de 100 metros em algumas partes do aquífero. Um modelo numérico tridimensional de fluxo de água subterrânea que descreve a evolução histórica dos níveis potenciométricos do aquífero foi desenvolvido e utilizado para simular o efeito de dois cenários: (1) uma redução de 40 % na taxa de extração nos poços de abastecimento público no começo de 2011 (assim, reduzindo a extração para 62 × 106 m3/ano), e (2) uma redução adicional em 2021 para 1 × 106 m3 /ano. Os resultados da modelagem projetam uma recuperação temporária dos níveis potenciométricos depois da redução de 40 % no começo de 2011, mas um retorno aos níveis de 2010 em 2020. Se o cenário 2 é implementado em 2021, o aquífero vai levar aproximadamente 30 anos para recuperar os níveis simulados para 1995. O modelo também mostra que os poços localizados na cidade de Querétaro começaram a extrair água de parte do aquífero abaixo do Estado de Guanajuato no final dos anos 1970, assim demonstrando que as fronteiras administrativas utilizadas no México para estudar e desenvolver os recursos hídricos são inapropriadas, e que deveriam ser consideradas as fronteiras físicas. Uma abordagem regional para o estudo de aquíferos é necessária para um entendimento adequado das dinâmicas de fluxo das águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aguirre-Diaz GJ, Lopez-Martinez M (2001) The Amazcala caldera, Queretaro, Mexico: geology and geochronology. J Volcanol Geotherm Res 111(1–4):203–218

    Article  Google Scholar 

  • Alaniz-Alvarez S, Nieto-Samaniego AF (2005) El sistema de fallas Taxco-San Miguel de Allende y la Faja Volcánica Transmexicana, dos fronteras tectónicas del centro de México activas durante el Cenozoico [The Taxco-San Miguel de Allende fault system and the Trans-Mexican Volcanic Belt, two active tectonic boundaries of Central Mexico during the Cenozoic]. Bol Soc Geol Mex 57(1):65–82

    Google Scholar 

  • Alaniz-Alvarez SA, Nieto-Samaniego AF, Reyes-Zaragoza MA, Orozco- Esquivel MT, Ojeda-García AC, Vassallo LF (2001) Estratigrafía y deformació n extensional en la región San Miguel de Allende-Querétaro, México [Stratigraphy and extensional deformation on the San Miguel de Allende-Querétaro region]. Rev Mex Cienc Geol 18(2):129–148

    Google Scholar 

  • Alaniz-Alvarez S, Nieto-Samaniego A, Orozco-Esquivel MT, Vassallo LF, Xu S (2002) The fault system Taxco-San Miguel de Allende: implications on post-Eocenic deformation in Central Mexico (in Spanish). Bol Soc Geol Mex LV(1):12–29

    Google Scholar 

  • Aguirre-Diaz GJ, Nieto-Obregon J, Madrid FRZ-D (2005) Seismogenic basin and range and intra-arc normal faulting in the central Mexican Volcanic Belt, Querétaro, México. Geol J 40(2):215–243

    Article  Google Scholar 

  • Allen R, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper no. 56. FAO, Rome

    Google Scholar 

  • Almorox J, Quej VH, Martí P (2015) Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J Hydrol 528:514–522

    Article  Google Scholar 

  • Aranda-Gómez JJ, Mcdowell FW (1998) Paleogene extension in the Southern Basin and Range Province of Mexico: syndepositional tilting of Eocene red beds and Oligocene volcanic rocks in the Guanajuato mining district. Int Geol Rev 40(2):116–134

    Article  Google Scholar 

  • Brunetti E, Jones JP, Petitta M, Rudolph DL (2012) Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol J 21(2):401–423

    Article  Google Scholar 

  • Carlyle-Moses DE (2004) Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. J Arid Environ 58(2):181–202

    Article  Google Scholar 

  • Carreón-Freyre D, Cerca-Martinez M, Luna-Gonzalez L, Gámez-González J (2005) Influencia de la estratigrafía y estructura geológica en el flujo de agua subterránea del Valle de Querétaro [Influence of stratigraphy and geologic structure on groundwater flow in the Querétaro Valley]. Rev Mex Cienc Geol 22(1):1–18

    Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2007a) Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J Hydrol 336(3-4):231–249

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2007b) The Basin of Mexico aquifer system: regional groundwater level dynamics and database development. Hydrogeol J 15(8):1577–1590

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2008a) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353(3–4):228–246

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2008b) The Basin of Mexico Hydrogeological Database (BMHDB): implementation, queries and interaction with open source software. Environ Model Softw 23(10–11):1271–1279

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2009) Water management in the Basin of Mexico: current state and alternative scenarios. Hydrogeol J 17(6):1483–1494

    Article  Google Scholar 

  • Carroll RWH, Pohll GM, Hershey RL (2009) An unconfined groundwater model of the Death Valley regional flow system and a comparison to its confined predecessor. J Hydrol 373(3–4):316–328

    Article  Google Scholar 

  • Comision Estatal del Agua (1999) Hydraulic plan of the state of Querétaro: 1, water supply and sanitation (in Spanish). Technical report, Comision Estatal del Agua, Querétaro, Mexico

  • D’Agnese F, Faunt C, Hill M, Turner A (1999) Death Valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems. Adv Water Resour 22(8):777–790

    Article  Google Scholar 

  • Davis KW, Putnam LD, LaBelle AR (2015) Conceptual and numerical models of groundwater flow in the Ogallala and Arikaree aquifers, Pine Ridge Indian Reservation area, South Dakota, water years 1980–2009. US Geol Surv Sci Invest Rep 2014–5241

  • DHI-WASY Ltd (2014) Finite element subsurface flow and transport simulation system. User manual, DHI-WASY, Berlin, 202 pp

  • Dingman SL (2002) Physical hydrology, 2nd edn. Waveland, Long Grove, IL

    Google Scholar 

  • Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318(1–4):161–185

    Article  Google Scholar 

  • Gannett MW, Wagner BJ, Lite KE (2012) Groundwater simulation and management models for the Upper Klamath basin, Oregon and California. US Geol Surv Sci Invest Rep 2012-5062

  • GRASS Development Team (2015) Geographic Resources Analysis Support System (GRASS GIS) software, 7.0 edn. GRASS, San Michele all’Adige, Italy

  • Huang Y, Wilcox BP, Stern L, Perotto-Baldivieso H (2006) Springs on rangelands: runoff dynamics and influence of woody plant cover. Hydrol Process 20(15):3277–3288

    Article  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Contributions to Hydrogeology, vol 8. Heise, Hanover, Germany

  • Malmström VH (1969) A new approach to the classification of climate. J Geogr 68(6):351–357

    Article  Google Scholar 

  • Marin LE (2002) Perspectives on Mexican ground water resources. Ground Water 40(6):570–571

    Article  Google Scholar 

  • Mayer A, May W, Lukkarila C, Diehl J (2007) Estimation of fault-zone conductance by calibration of a regional groundwater flow model: Desert Hot Springs, California. Hydrogeol J 15(6):1093–1106

    Article  Google Scholar 

  • McKee PW, Clark BR (2003) Development and calibration of a ground water flow model for the Sparta aquifer of southeastern Arkansas and north central Louisiana and simulated response to withdrawals, 1998–2027. US Geol Surv Water Resour Invest Rep 03-4132

  • Mexican Environmental Agency (2013) Partial reserve of national surface waters for public and domestic water use on the regions of the hydrological Basins of the Moctezuma, Extoraz and Santa Maria Rivers (in Spanish). Diario oficial de la Federación, Mexican Environmental Agency, Mexico City, pp 1–5

  • Mitasova H, Mitas L, Harmon RS (2005) Simultaneous spline approximation and topographic analysis for LiDAR elevation data in open-source GIS. Geosci Remote Sens Lett IEEE 2(4):375–379

    Article  Google Scholar 

  • Nastev M, Rivera A, Lefebvre R, Martel R, Savard M (2005) Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada. Hydrogeol J 13(5–6):835–848

    Article  Google Scholar 

  • Ochoa-Gonzalez G, Carreón-Freyre D, Cerca M, Lopez-Martinez M (2015) Assessment of groundwater flow in volcanic faulted areas: a study case in Querétaro, Mexico. Geof Int 54(3):1–10

  • Rushton K, Eilers V, Carter R (2006) Improved soil moisture balance methodology for recharge estimation. J Hydrol 318(1–4):379–399

    Article  Google Scholar 

  • Scanlon BR, Faunt CC (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109(24):9320–9325

    Article  Google Scholar 

  • Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Futur Gener Comput Syst 20(3):475–487

    Article  Google Scholar 

  • Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Heidelberg, Germany, pp 203–222

  • Sophocleous M (1995) Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J Hydrol 137:113–140

    Article  Google Scholar 

  • Sophocleous M (2009) Review: groundwater management practices, challenges, and innovations in the High Plains aquifer, USA—lessons and recommended actions. Hydrogeol J 18(3):559–575

    Article  Google Scholar 

  • Tiedeman CR (2003) Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system. Water Resour Res 39(1), 1010

  • Tiedeman CR (2004) A method for evaluating the importance of system state observations to model predictions, with application to the Death Valley regional groundwater flow system. Water Resour Res 40(12), W12411

Download references

Acknowledgements

We thank the Comisión Nacional del Agua (CONAGUA) for its support to develop this work through Project No. SGT-OCLSP-QRO-13-EP-085-RF-CC. In particular, we thank Ing. Javier Gamez Gonzalez from CONAGUA for his technical support during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Carrera-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrera-Hernández, J.J., Carreón-Freyre, D., Cerca-Martínez, M. et al. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico. Hydrogeol J 24, 373–393 (2016). https://doi.org/10.1007/s10040-015-1363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1363-x

Keywords

Navigation