Skip to main content

Advertisement

Log in

Long-term improvement of agricultural vegetation by floodwater spreading in the Gareh Bygone Plain, Iran. In the pursuit of human security, is artificial recharge of groundwater more lucrative than selling oil?

Amélioration à long terme de l’agriculture par épandage des eaux de crues dans la plaine de Gareh Bygone, Iran. La recharge artificielle des eaux souterraines est-elle plus lucrative que la vente de pétrole pour assurer la sécurité des populations?

Mejoramiento a largo plazo de la vegetación agrícola por difusión del agua de inundación en el Gareh Bygone Plain, Irán. En la búsqueda de la seguridad humana, es la recarga artificial del agua subterránea más lucrativa que la venta de petróleo?

伊朗Gareh Bygone平原洪水蔓延的农业植被的长期改良。为了追求安全,地下水人工补给比出售石油更合算吗?

بهبود بلند مدت فراورده های كشاورزي با گسترش سيلاب در دشت گربايگان، ايران: آيا براي تامين امنيت انسان‌ها، تغذيه‌ي مصنوعي آبخوانها سودمندتر است يا فروش نفت ؟

Melhoria a longo prazo da vegetação agrícola por água de inundação na Planície de Gareh Bygone, Irã. Em busca por segurança humana, seria a recarga artificial de águas subterrâneas mais lucrativa que a venda de petróleo?

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In southern Iran’s Gareh Bygone Plain, water-supply qanats in four mixed farming communities were desiccated by over-pumping of illegal dug wells throughout the area. Emergency situations developed, resulting in city-ward migration. Since 1983, 193 million m3 of water has been supplied to those communities by floodwater spreading (FWS) to facilitate spate irrigation of sandy rangeland (2,034 ha) and artificial recharge of groundwater (ARG), of which 76 % has recharged the aquifer. This resulted in a reverse migration of the population. The irrigated area in the 2010–2011 growing season increased 13.2 fold when compared to the pre-FWS period, and year-round forage for about 700 sheep has been provided since 1991. The ARG is a logical alternative to building large dams in Iran; 420,000 km2 of coarse-grained alluvium provides capacity to store 5,000 km3 of water, representing more than ten times the annual precipitation of the whole country. As the equivalent cost for building dams to accommodate that volume is estimated at US$12.5 × 1012, the potential value of the alluvium may be realized. ARG on the recharge areas of 33,000 of the desiccated qanats eventually could rejuvenate them. As agricultural commodities absorb 19 % of the monetary value of Iran’s imports, and ARG activities could supply the water to produce them, alluvium is even more valuable than oil, which provides foreign exchange. More importantly, ARG on 140,000 km2 of the alluvium could strengthen the capacity to adapt to droughts and reduce the number and impact of water-related emergency situations.

Résumé

Dans la plaine de Gareh Bygone dans le sud de l’Iran, les systèmes de drainage des eaux souterraines dans quatre communautés agricoles ont été asséchés par le pompage excessif dans des puits creusés illégalement dans toute la région. Des situations d’urgence ont pris place, entraînant une migration des populations vers les villes. Depuis 1983, 193 millions de m3 d’eau ont été fournies à ces communautés par épandage des eaux de crues afin de faciliter l’irrigation de terrains sableux (2,034 ha) et la recharge artificielle des eaux souterraines; 76 % de ce volume ont contribué à la recharge de l’aquifère. Cela a conduite à une inversion de la migration de la population. La surface irriguée au cours de la saison des cultures 2010–2011 a été multipliée par 13.2 par comparaison à la période pré-épandage des eaux de crues, et l’équivalent d’une année de fourrage pour environ 700 moutons a été fournie depuis 1991. La recharge artificielle des eaux souterraines est une alternative logique à la construction de grands barrages en Iran; 420,000 km2 d’alluvions grossières permettent une capacité de stockage de 5,000 km3 d’eau, ce qui représente plus de dix fois les précipitations annuelles de l’ensemble du pays. Le coût équivalent pour la construction de barrages pour un tel volume étant estimé à US$12.5 × 1012, la valorisation potentielle des alluvions peut apparaître réalisable. La recharge artificielle des eaux souterraines sur les surfaces de recharge des 33,000 systèmes de drainage des eaux souterraines par tunnel (qanats) desséchés pourrait contribuer à les réactiver. Comme les produits issus de l’agriculture absorbent 19 % de la valeur monétaire des imports iraniens, et que les activités de recharge artificielle des eaux souterraines pourraient fournir de l’eau pour la production agricole, les alluvions apparaissent comme étant plus précieuse que le pétrole, qui fournit la valeur du change. Plus important encore, la recharge artificielle des eaux souterraines sur 140,000 km2 d’alluvions pourrait renforcer la capacité d’adaptation à la sécheresse et réduire le nombre et l’impact des situations d’urgence associées à l’eau.

Resumen

En la llanura sureña de Gareh Bygone en Irán, los qanats de abastecimiento de agua a cuatro comunidades agrícolas mixtas fueron desecados por sobrebombeo de pozos ilegales excavados en toda la zona. Se desarrollaron situaciones de emergencia, que resultaron en la migración hacia las ciudades. Desde 1983, 193 millones de m3 de agua han sido suministrados a dichas comunidades por la difusión del agua de inundación (FWS) para facilitar el riego por inundación de las áreas arenosas (2,034 ha) y la recarga artificial del agua subterránea (ARG), de los cuales el 76 % ha recargado el acuífero. Esto dio lugar a una migración inversa de la población. La superficie de riego en la estación de crecimiento 2010–2011 se incrementó 13.2 veces en comparación con el período pre-FWS, y las plantas forrajeras anuales proporcionaron para alrededor de 700 ovejas desde 1991. El ARG es una alternativa lógica a la construcción de grandes represas en Irán; 420,000 km2 de aluvión de grano grueso proporciona la capacidad para almacenar 5,000 km3 de agua, lo que representa más de diez veces la precipitación anual de todo el país. Puesto que el costo equivalente para la construcción de presas para albergar a ese volumen se estima en US$12.5 × 1012, el valor potencial de los aluviones debe ser tenido en cuenta. El ARG en las zonas de recarga de 33,000 de los qanats desecados eventualmente podría rejuvenecerlos a ellos. Como los productos agrícolas absorben el 19 % del valor monetario de las importaciones de Irán, y las actividades ARG podrían suministrar el agua para producirlos, los aluviones son aún más valiosos que el petróleo, para proporcionar divisas. Más importante aún, los ARG sobre 140,000 km2 del aluvión podrían fortalecer la capacidad para adaptarse a las sequías y reducir el número y el impacto de las situaciones de emergencia relacionadas con el agua.

摘要

在伊朗南部的Gareh Bygone平原,由于从非法挖掘的井中过量抽水,致使四个混合的农业社区供水坎井被疏干。紧急状况持续发展,导致人口向城市方向迁移。自从1983年,通过洪水蔓延向这些社区供水1.93亿方水,促进了砂质牧场(2034公顷)的漫灌和地下水人工补给,其中76%补给了含水层。这导致了人口的逆向迁移。2010–2011年生长季节灌溉面积与洪水蔓延前相比增加了13.2倍,自从1991年提供了大约700只羊一年的饲料。地下水补给是伊朗建设大型水坝合理选择;42万平方千米的粗颗粒冲积层提供了5000立方千米的储存能力,是全国年降水量的10倍多。建设储存如此水量 的大坝所花的开支估计为12.5 × 1012美元,因此,就可实现冲积层的潜在价值。对33000个干燥的坎儿井的补给区,地下水人工补给最终能恢复他们。农产品承担19%的伊朗进口的货币价值,地下水人工补给活动能产生他们供给水,冲积层甚至比石油更珍贵,在于它提供外汇。更重要的是,地下水人工补给对140000平方公里的冲积层可以加强能力适应干旱和减少与水有关的紧急情况的影响。

چکیده

پيامد آبكشي بي‌رويه از چاههاي غير مجاز، خشكيدن كاريزهايي بود كه آب چهار روستا را در دشت گربايگان در جنوب ايران تامين مي‌كردند. اين نابخردي سبب بحراني شدن شرايط زيست و مهاجرت گروهي روستاييان به شهرها شد. بناي 2034 هكتار شبكه‌هاي گسترش سيلاب براي آبياري سيلابي و تغذيه‌ي مصنوعي آبخوانها از دي1361 تا 1375، سبب مهار شدن 193 ميليون مترمكعب سيلاب و نفوذ 76 در صد آن به آبخوان شد. نتيجه اين كار ايجاد انگيزه‌ي بازگشت در بيشتر مهاجران به روستاهايشان بود. در نتيجه اجراي اين طرح در سال زراعي 1390−1389، مساحت پهنه‌ي كشتزارهاي آبيانه 13.2 برابر سال 1361 شد. افزون بر آن، از سال 1369 تاكنون، سالانه براي 700 واحد دامي علوفه‌ي مغذي تهيه شده است. تغذيه‌ي مصنوعي آبخوانها گزينه‌اي بخردانه را در برابر ساختن سدهاي بزرگ پيشنهاد مي‌كند. 420 هزار كيلومتر مربع از پهنه‌ي ايران را آبرفتهاي درشت دانه‌ي ژرف پوشانده‌اند. گنجايش اين آبخوانهاي 5000 كيلومتر مكعب، يعني 10 برابر بارندگي سالانه‌ي سراسر ايران است. اگر هزينه‌ي فراهم ساختن يك متر مكعب گنجايش در سراب سدهاي بزرگ 2.5 دلار آمريكاي منظور گردد، ارزش بالقوه‌ي اين فضاي تهي 1012 ×12.5لار است. افزون بر آن، گسترش سيلاب بر فراز آبخوانهاي 33000 رشته كاريز خشكيده، سبب به راه افتادن دو باره‌ي آنها خواهد شد. 19 درصد ارزش واردات ايران در سال 1392 مربوط به مواد غذايي است كه در صورت در دسترس بودن آب مي‌توان بخشي از آن را در كشور توليد كرد. از آن جا كه تغذيه‌ي مصنوعي آبخوانها آب مورد نياز را فراهم مي‌آورد، ارزش آبرفتها بيش از نفتي است كه از فروش آن ارز لازم براي خريدن مواد غذايي به دست مي‌آيد. تغذيه‌ي مصنوعي آبخوانها در پهنه‌ي 140000 كيلومتر مربع، توان ايران را براي مقابله با خشكسالي و كاهش بحرانهاي مربوطه مي‌افزايد.

No sul da planície Gareh Bygone no Irã, quatro qanats de abastecimento de água de comunidades com agricultura diversificada foram dessecados por excesso de bombeamento de poços cavados de forma ilegal por toda a área. As situações de emergência desenvolvidas resultaram em migrações para a cidade. Desde 1983, 193 milhões de m3 de água foram fornecidos a essas comunidades por água de inundação (AI), a fim de facilitar a irrigação por inundação em pastagens arenosas (2,034 ha) e a recarga artificial (RA) das águas subterrâneas, das quais 76 % recarregam o aquífero. Isto resultou em uma migração inversa da população. A área irrigada na safra (2010–2011) aumentou em 13.2 vezes quando comparada com o período pré-AI, e a forragem anual de cerca de 700 ovelhas tem sido fornecida desde 1991. A RA das águas subterrâneas é uma alternativa lógica para a construção de grandes barragens no Irã; 420,000 km2 de aluvião de granulação grossa apresentam capacidade para armazenar 5,000 km3 de água, o que representa mais de dez vezes a precipitação anual de todo o país. Como o custo equivalente para a construção de barragens para acomodar esse volume é estimado em US $ 12.5 × 1012, o valor potencial do aluvião pode ser considerado. A RA das águas subterrâneas nas áreas de recarga de 33,000 dos qanats dessecados poderia, eventualmente, rejuvenescê-los. Como as commodities agrícolas absorvem 19 % do valor monetário das importações do Irã, e as atividades de RA das águas subterrâneas poderiam proporcionar água para produzi-las, o aluvião é ainda mais valioso do que o petróleo, que gera câmbio externo. Mais importante, a RA das águas subterrâneas em 140,000 km2 de aluvião poderia reforçar a capacidade de adaptação às secas e reduzir o número e impacto das situações de emergência relacionadas a água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakhtiar A, Najafi B, Kowsar A, Habibian SH (1997a) Socio-economic effects of floodwater spreading system in the Gareh Bygone Plain (in Farsi).In: Proc. 2nd Nat. Conf. desertification control methods. Res. Inst. For. Rangel. Tehran, I. R. Iran. p 325–332

  • Bakhtiar A, Najafi B, Mesbah SH (1997b) Economic return of flood spreading system in Iran: The case of the Gareh Bygone project (in Farsi). In: Proc. 1st Meet. Appl. Sci. Econ. Water Resour. 18–19 Jan. 1997. Ministry of power, Tehran, I. R. Iran. p 155–167

  • Bordbar SK, Mortazavi Jahromi SM (2006) Potential of the western Fars Eucalyptus camaldulensis Dehnh. and Acacia salicina Lindl. afforestation for carbon sequestration (in Farsi). Pezhoohesh va Sazandegi [Res Reconstr] 75:95–103

    Google Scholar 

  • Botzan TM, Necula A, Marin˜o AM, Hakan Basagaoglu H (1999) Benefit-cost model for an artificial recharge scenario in the San Joaquin valley, California. Water Resour Manag 13:189–203

    Article  Google Scholar 

  • Bou-Zeid E, El-Fadel, M (2002) Climate change and water resources in Lebanon and the Middle East. J Water Resour Plan Manage 128(5):343–355

  • Breman H, de Wit CT (1985) Rangeland productivity and exploitation in the Sahel. Science (Wash DC) 221:1341–1347

    Article  Google Scholar 

  • Bybordi M (1974) Ghanats of Iran: drainage of sloping aquifer. J Irrig Drain Div ASCE 100(IR3):245–253

    Google Scholar 

  • Dewan ML, Famouri J (1964) The soils of Iran. FAO, Rome

    Google Scholar 

  • Donovan JD, Katzer T, Brothers K, Cole K, Johnson M (2002) Cost-benefit analysis of artificial recharge in Las Vegas valley, Nevada. J Water Resour Plan Manag 128:356–365

    Article  Google Scholar 

  • Esmaeili Vardanjani N, Gabriels D, Kowsar SA, Raes D (2013) Assessment of sediment deposition in a floodwater spreading system of the Gareh Bygone plain, I. R. Iran. In: De Boever M, Khlosi M, Delbecque N, De Pue J, Ryken N, Verdoodt A, Cornelis W, Gabriels D (eds) Desertification and land degradation processes and mitigation, UNESCO chair of eremology. Ghent Univ, Belgium, pp 144–150

    Google Scholar 

  • Evenari M, Shanan L, Tadmor NH (1971) The Negev: the challenge of a desert. Harvard Univ. Press, Cambridge

    Google Scholar 

  • FAO (1993) The state of food and agriculture: water policies and agriculture. FAO, Rome

    Google Scholar 

  • Fookes PG, Knill JL (1969) The application of engineering geology in the regional development of northern and central Iran. Eng Geol 3:81–120

    Article  Google Scholar 

  • Foroozeh MR, Heshmati G, Mesbah SH, Qanbari G (2008) Effects of spate irrigation on the carbon sequestration of Helianthemum lippii (L.), Dendrostellera lesserVan Tiegh., and Artemisia sieberi Besser(in Farsi). Pezhoohesh va Sazandegi [Res Reconstr] 78:11–19

    Google Scholar 

  • French NH, Hussain I (1964) Water spreading manual. Range management record No. 1. West Pakistan Range Improvement Scheme, Lahore

    Google Scholar 

  • Gulhati ND, Smith WC (1967) Irrigated agriculture: an historical review. In: Hagan RM, Haise HR, Edminister TW (eds) Irrigation of agricultural lands, Agron. Monogr. 11. ASA, Madison, WI, USA. p 3–11

  • Hashemi H (2014) Floodwater harvesting for artificial recharge of groundwater-estimation and prediction for arid Iran. Ph.D. Thesis. Lund Univ., Sweden

  • Hashemi H, Berndtsson R, Kompani-Zare M, Persson (2013) Natural vs. artificial groundwater recharge quantification through inverse modeling. Hydrol Earth Syst Sci 17:637–650

    Article  Google Scholar 

  • Hashemi H, Berndtsson R, Persson M (2015) Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. Hydrol Sci J 60:336–350

    Article  Google Scholar 

  • Hendrickx JMH, Khan AS, Bannink MH, Birch D, Kidd C (1991) Numerical analysis of groundwater recharge through stony soils using limited data. J Hydrol 127:173–192

    Article  Google Scholar 

  • Houston WR (1960) Effects of water spreading on range vegetation in eastern Montana. J Range Manag 13:289–293

    Article  Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49:2182–2245

    Google Scholar 

  • Karimzadegan H, Rahmatian M, Mahmoudi M (2000) Valuing environmental benefits of the Gareh Bygone afforestation using the linear expenditure system (ELES) (in Farsi). MohitShenasi [Environ] 26:50–59

    Google Scholar 

  • Khan S, Mushtaq S, Munir AH, Schaeffer J (2008) Estimating potential costs and gains from an aquifer storage and recovery program in Australia. Agric Water Manag 95:477–488

    Article  Google Scholar 

  • Khanmirzaei A, Adhami E, Kowsar SA, Sameni AM (2009) Organic and inorganic forms of phosphorus in a calcareous soil planted to four species of eucalyptus in southern Iran. Commun Soil Sci Plant Anal 40:3194–3210

    Article  Google Scholar 

  • Khanmirzaei A, Kowsar SA, Sameni AM (2011) Changes of selected soil properties in a floodwater-irrigated eucalyptus plantation in the Gareh Bygone plain, Iran. Arid Land Res Manag 25:38–54

    Article  Google Scholar 

  • Kowsar A (1982) Water harvesting for afforestation: III. Dependence of tree growth on amount and distribution of precipitation. Soil Sci Soc Am J 46:802–807

    Article  Google Scholar 

  • Kowsar SA (1991) Floodwater spreading for desertification control: an integrated approach. Desertification Control Bull (UNEP) 19:3–18

    Google Scholar 

  • Kowsar SA (1998) Aquifer management: a new approach to soil and water conservation. In: new technologies to combat desertification. UNU desertification ser. no. 1. p 89–94

  • Kowsar SA (2005) Abkhandari (aquifer management): a green path to the sustainable development of marginal drylands. J Mt Sci 2:233–243

    Article  Google Scholar 

  • Kowsar SA (2006) An empirical design of stilling basins for the artificial recharge of groundwater. In: Neupane B, Jayakumar R, Salamat A, Salih A (eds) Management of aquifer recharge and water harvesting in arid and semi-arid regions of Asia. Proc. Reg. Workshop held in Yazd, I. R. Iran, under the auspices of UNESCO. 27 Nov.-1 Dec. 2004. Oxford & IBH Publ. Co. Pvt. Ltd., New Delhi, pp 207–218

    Google Scholar 

  • Kowsar SA (2008a) Desertification control through floodwater harvesting: the current state of know-how. In: Lee C, Schaaf T (eds) The future of drylands. Int. Sci. Conf. desertification drylands Res. Tunis, Tunisia, 19–21 June 2006. Man and Biosphere Ser. UNESCO Publ, Paris, pp 229–241

    Google Scholar 

  • Kowsar SA (2008b) Using community mobilization and engagement to design management practices-Aquitopia: living versus existing. In: Adeel Z, King C, Schaaf T, Thomas R, Schuster B (eds) People in marginal drylands: managing natural resources to improve human well-being. A policy brief based on the sustainable management of marginal drylands (SUMAMAD) project. The United Nations University. UNU-INWEH, Hamilton, p 17

    Google Scholar 

  • Kowsar SA (2008c) Viewpoints: “How can sustainable land management contribute to mitigating climate change?”. Nat Res Forum 32:254

    Google Scholar 

  • Kowsar SA, Kowsar SS (2012) Karaji: mathematician and qanat master. Ground Water 50:812–817

    Article  Google Scholar 

  • Kowsar SA, Pakparvar M (2004) Assessment methodology for establishing an Aquitopia, Islamic Republic of Iran. In: Schaaf T. (series ed) Lee C (volume ed) Sustainable management of marginal drylands (SUMAMAD).Proc. 2nd Int. Workshop. Shiraz, I. R. Iran. 29 Nov. - 2 Dec. 2003. UNESCO-MAB dryland. ser. no. 3.p 40–55

  • Melville C (1984) Meteorological hazards and disasters in Iran: a preliminary survey to 1950, Iran. J Brit Inst Pers Stud 22:113–150

    Google Scholar 

  • Mesbah SH, Kowsar SA (2010) Spate irrigation of rangelands: a drought mitigating mechanism. In: Wager FC (ed) Agricultural production. Nova Sci. Publ, Hauppauge, pp 39–78

    Google Scholar 

  • Mohammadnia M, Kowsar SA (2003) Clay translocation in the artificial recharge of a groundwater system in the southern Zagros mountain, Iran. Mt Res Dev 23:50–55

    Article  Google Scholar 

  • Mohammadnia M, Kowsar SA (2011) Eucalyptus camaldulensis Dehnh.: an effective remediator of geologic nitrogen in groundwater. In: Laughton RH (ed) Aquifers: formation, transport and pollution. Nova Sci. Publ, Hauppauge, pp 2–85

    Google Scholar 

  • Naderi AA, Kowsar SA, Sarafraz AA (2000) Reclamation of a sandy desert through floodwater spreading: I. Sediment-induced changes in selected soil chemical and physical properties. J Agric Sci Technol (Iran) 2:9–20

    Google Scholar 

  • Nejabat M (2009) Decision support system for desertification control through floodwater spreading in Islamic Republic of Iran, Ph.D. thesis. Univ. Putra Malaysia. Kualalumpur, Malaysia

  • Newman JC (1963) Water spreading on marginal arable areas. J Soil Conserv NSW 19:49–58

    Google Scholar 

  • Oberlander T (1965) The zagros streams. The new interpretation of transverse drainage in the orogenic zone. Syracuse Geogr. ser., no. 1. Syracuse Univ. Press, Syracuse

    Google Scholar 

  • Ouessar M, Saghaier M, Taamallah H, Belgacem O, Khatteli H (2006) Bio-environment and socioeconomic management and income generation in the Tunisian project site. Sustainable management of marginal drylands (SUMAMAD).Proc. :4th Proj. Workshop, Islamabad, Pakistan. 27–31 January 2006. p 135–143

  • Pakparvar M (2015) Evaluation of floodwater spreading for groundwater recharge in the Gareh Bygone plain, southern Iran. Ph.D thesis, Gent University, Belgium

  • Pakparvar M, Cornelis W, Pereira LS, Gabriels D, Hosseinimarandi H, Edraki M, Kowsar SA (2014) Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data. J Hydroinformatics 16:1441–1460

    Article  Google Scholar 

  • Pearce F (2014) Mideast water wars: In Iraq, A Battle for Control of Water. 25 Aug 2014, Yale 360.e360.yale.edu/feature/mideast_water_wars_in_iraq.../2796/

  • Phillips JRH (1957) Level-sill bank outlets. J Soil Conserv NSW 13:15

    Google Scholar 

  • Pooladian A, Kowsar SA (2000) Aquifer management: a prelude to reclamation of salinized soils. Desertification Control Bull (UNEP) 36:78–82

    Google Scholar 

  • Quilty JA (1972a) Soil conservation structures for marginal arable areas: contour ditches. J Soil Conserv NSW 28:82–87

    Google Scholar 

  • Quilty JA (1972b) Soil conservation structures for marginal arable areas: gap absorption and gap spreader banks. J Soil Conserv NSW 28:116–130

    Google Scholar 

  • Raeisi E, Kowsar A (1998) A system performance evaluation of the Gooyom floodwater spreading project. Iran J Sci Technol 22:169–184

    Google Scholar 

  • Rahnemaei M, Boustani F, Kowsar SA (2013) Achieving groundwater sustainability in Iran through qanat rejuvenation. Hydrol Curr Res 4:150. doi: 10.41722157-7587.1000150

  • Reese R (2002) Inventory and review of aquifer storage and recovery in Southern Florida. USGS Report, WRI 02-4036

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370

  • Sheng Z (2005) An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. J Environ Manag 75:367–377

    Article  Google Scholar 

  • Singh B, Sekhon GS (1978) Leaching of nitrate in calcareous soils as influenced by its adsorption on calcium carbonate. Geoderma 20:271–279

  • Smith M (1992) CROPWAT-a computer program for irrigation planning and management. Irrigation and drainage paper 46. FAO, Rome

    Google Scholar 

  • Soil Survey Staff (1998) Keys to soil taxonomy, 8th edition. USDA-NRCS. Washington, D.C. US Govern. Print. Off

  • Starr JR, Stoll DC (1987) US foreign policy on water resources in the Middle East. The Cen. Strateg. Int. Stud, Washington, DC

    Google Scholar 

  • Stiefel JM, Melesse AM, McLain ME, Price RM, Anderson EP, Chauhan NK (2009) Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeol J 17:2061–2073

    Article  Google Scholar 

  • Stokes CM, Larson FD, Pearse CK (1954) Range improvement through water spreading. Foreign Operations Administration, Washington, DC

    Google Scholar 

  • The Global Commission on Economy and Climate (2014) The new climate economy, www.newclimateeconomy.net Accessed on 26 Nov 2012

  • The I. R. Iran Custom Service (2014) The annual statistics of foreign trade of the I. R. Iran (in Farsi)

  • USEPA (2000) Drinking water standards and health advisories.US environmental protection agency, Off. Water, 822-B-00-001

  • van Bavel CHM (1977) Soil and oil. Science (Wash DC) 197:213

    Article  Google Scholar 

  • Vista Hub (2012) Iran is discussing to buy annually one billion m3 of water from Tajikistan (in Farsi); Vista News Hub, Vista.ir /news /3772377, 31 May 2012

  • Vrba J, Renaud FG (2015) Overview of groundwater for emergency use and human security. Hydrogeol J. doi:10.1007/s10040-015-1355-x

  • Wulff H (1968) The qanats of Iran. Sci Am 218:94–105

    Article  Google Scholar 

  • Yazdian AR, Kowsar SA (2003) The Agha Jari formation: a potential source of ammonium and nitrate nitrogen fertilizers. J Agric Sci Technol (Iran) 5:153–163

    Google Scholar 

Download references

Acknowledgments

This activity was performed under the auspices of the Fars Research Center for Agriculture and Natural Resources. We are highly indebted to the personnel of the Kowsar Floodwater Spreading and Aquifer Management Research, Training and Extension Station, who have constructed and maintained the ARG systems since 1983. We thank the graduate students and their professors for the implementation of applied research projects at the station. We appreciate greatly Ms. Ladan Jowkar’s statistical analyses of our forage data. Dr. Mojtaba Pakparvar helped us with the graphics. We are obliged to the UNU-INWEH, UNESCO, and the Flemish Government of Belgium who supported us substantially through the SUMAMAD Programme. We are grateful to the GWAHS for giving us a forum to present a proven thesis for the development of a desert. Above all, we thank the Government of the Islamic Republic of Iran for giving us the opportunity to serve mankind.

We also would like to express our gratitude to Dr. Screaton and Dr. Georg Houben, Editor and Associate Editor of Hydrogeology Journal, respectively, for their open-mindedness; Dr. Christoph Weidner, a diligent reviewer who, along with offering constructive criticisms of the paper substantially improved its diction; and to an anonymous reviewer who urged us to rephrase some of the statements to make them clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Hamid Mesbah.

Additional information

This article belongs to a group of articles that consider groundwater resources for risk reduction in emergencies.

Appendix 1

Appendix 1

In recognition of Dr. Kowsar’s achievements in floodwater harvesting, particularly for the artificial recharge of groundwater, the Gareh Bygone Plain research site, which has been in operation since 1983, was named after him. Kowsar Floodwater Spreading and Aquifer Management Research, Training and Extension Station (Kowsar Station) was inaugurated in 1992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbah, S.H., Mohammadnia, M. & Kowsar, S.A. Long-term improvement of agricultural vegetation by floodwater spreading in the Gareh Bygone Plain, Iran. In the pursuit of human security, is artificial recharge of groundwater more lucrative than selling oil?. Hydrogeol J 24, 303–317 (2016). https://doi.org/10.1007/s10040-015-1354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1354-y

Keywords

Navigation