Skip to main content
Log in

A combined-water-system approach for tackling water scarcity: application to the Permilovo groundwater basin, Russia

Une approche combinée eau système pour lutter contre la pénurie en eau: application au bassin d’eau souterraine de Permilovo, Russie

Un enfoque de un sistema combinado de agua para enfrentar la escasez de agua: aplicaciones a la cuenca de agua subterránea Permilovo, Rusia

解决水匮乏的一个联合的水系统方法:在俄罗斯Permilovo 地下水盆地的应用

Uma abordagem de sistema de água combinado para combater a escassez de água: aplicação na bacia de águas subterrâneas Permilovo, Russia

Применение комбинированных водозаборных систем для решения проблемы дефицита водных ресурсов: анализ метода на Пермиловском месторождении подземных вод, Россия

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The suitability of a combined water system (CWS) is assessed for meeting drinking-water demand for the city of Arkhangelsk (northwestern Russian Federation), instead of using the polluted surface water of the Northern Dvina River. An appropriate aquifer system (Permilovo groundwater basin) was found and explored in the 1980s, and there were plans then to operate an abstraction scheme using traditional pumping methods. However, the 1980s planned water system was abandoned due to projected impermissible stream depletion such that complete interception of the cone of depression with the riverbed would cause the riverbed to become dry. The design of a CWS is now offered as an approach to addressing this environmental problem. Several sets of major pumping wells associated with the CWS are located on the banks of Vaymuga River and induce infiltration from the stream. The deficiency of the stream flow in dry seasons is compensated for by pumping from aquifer storage. A numerical model was constructed using MODFLOW-2000. The results of the simulation showed the efficiency of the compensation pumping. The streamflow depletion caused by the CWS is equal to the minimum permissible stream flow and is lower than the depletion projected by the abandoned plan. Application of the CWS in the Permilovo groundwater basin makes it possible to meet water demands during water-limited periods and to avoid environmental problems.

Résumé

La pertinence d’un système d’eau combine (SEC) est évaluée pour satisfaire la demande en eau potable pour la ville d’Arkhangelsk (Nord-Ouest de la Fédération de Russie), au lieu d’utiliser de l’eau de surface contaminée du nord de la rivière Dvina. Un système aquifère approprié (le bassin d’eaux souterraines de Permilovo) a été découvert et exploré dans les années 1980, et il y avait des plans alors pour faire fonctionner un schéma d’abstraction en utilisant des méthodes de pompage traditionnelles. Cependant, le système d’eau aménagé dans les années 1980 a été abandonné en raison d’un épuisement projeté inadmissible du cours d’eau tel que l’interception complète du cône de dépression au niveau du lit du cours d’eau cause l’asséchement du lit du cours d’eau. La conception d’un SEC est maintenant proposée par une approche permettant de résoudre ce problème environnemental. Plusieurs ensembles de puits de pompage associés avec le SEC sont localisés sur les rives de la rivière Vaymuga et favorisent l’infiltration du cours d’eau. Le déficit d’écoulement du cours d’eau pendant les périodes de basses eaux est compensé par le pompage dans l’aquifère. Un modèle numérique a été construit en utilisant MODFLOW-2000. Les résultats de la simulation ont montré l’efficacité des pompages de compensation. L’épuisement de l’écoulement du cours d’eau causé par le SEC est égal au débit minimum admissible du cours d’eau et est inférieur à la déplétion prévue dans le plan abandonné. L’application du SEC dans le bassin d’eaux souterraines de Permilovo permet de répondre à la demande en eau pendant des périodes limitées en eau et éviter des problèmes environnementaux.

Resumen

Se evalúa la aptitud de un sistema combinado de agua (CWS) para satisfacer la demanda de agua potable a la ciudad de Arkhangelsk (noroeste de Rusia), en lugar de utilizar el agua superficial contaminada del río Dvina del Norte. En la década de 1980 se encontró y exploró un sistema acuífero apropiado (cuenca de agua subterránea de Permilovo), y hubo en ese entonces planes para operar un sistema de extracción utilizando métodos tradicionales de bombeo. Sin embargo, en esos mismos años 80 se abandonaron esos planes debido al agotamiento permitido de la corriente causaría que la intercepción del cono de la depresión con el lecho del río produciría que el cauce del río se seque. Ahora se ofrece el diseño de un CWS para hacer frente a este problema ambiental. Se localizaron varios conjuntos de pozos principales de bombeo asociados con las CWS en las márgenes del río Vaymuga y se induce la infiltración a partir de la corriente. La deficiencia del flujo de la corriente en la época seca se compensa bombeando desde el almacenamiento del acuífero. Se construyó un modelo numérico utilizando MODFLOW-2000. Los resultados de la simulación mostraron la eficiencia del bombeo por la compensación. El agotamiento del flujo causado por el CWS es igual al mínimo permisible de la corriente y es menor al agotamiento proyectado por el plan abandonado. La aplicación de las CWS en la cuenca subterránea Permilovo hace posible satisfacer la demanda de agua durante los períodos de escasez de agua y para evitar problemas ambientales.

摘要

为满足(俄罗斯西北地区)Arkhangelsk市饮用水需求,在不用北部的Dvina河污染的地表水条件下,对联合的水系统的适用性进行了评价。20世纪80年代,发现并开发了一个合适的含水层系统(Permilovo 地下水盆地),随后还制定了采用传统抽水方法的抽水运行计划。然而,由于预测的不许可的河水消耗以至于下降漏斗和河床的完全拦截会导致河床干涸,因此,20世纪80年代计划的水系统被放弃。如今联合水系统的设计作为解决这个环境问题的方法被提了出来。与联合水系统相关的几套主要抽水井位于Vaymuga河两岸,引起了河水的入渗。干旱季节河水的匮乏通过抽取含水层储量补偿。采用MODFLOW-2000建立了数值模型。模拟结果显示了补偿抽水的效益。联合的水系统引起的河水损耗等于最小的允许河流量,低于放弃的计划所预测的消耗。在Permilovo 地下水盆地应用联合的水系统使水受限期间满足水需求及避免环境问题成为可能。

Resumo

A adequação de um sistema de agua combinado (SAC) é avaliada por compreender a demanda de água potável da cidade de Arkhangelsk (noroeste da Federação Russa), ao invés da utilização da água superficial poluída do rio ao norte de Dvina. Um sistema aquífero apropriado (bacia de águas subterrâneas Permilovo) foi encontrado e explorado nos anos 1980, e haviam planos para a operação de um esquema de abstração utilizando métodos tradicionais de bombeamento. Entretanto, o sistema de planejamento hídrico dos anos 1980 foi abandonado por causa da depleção do córrego projetada de forma não permissível, visto que uma interceptação completa do cone de depressão com a base do rio poderia causar a drenagem do leito do rio. O design de um SAC é agora oferecido como uma abordagem para amenizar o problema ambiental. Alguns conjuntos de poços de bombeamento maiores associados com o SAC foram posicionados nos bancos do rio Vaymuga e induziram infiltração para o fluxo do córrego. A deficiência no sistema de vazão em temporadas secas é compensada pelo bombeamento do armazenamento do aquífero. Um modelo numérico foi construído utilizando MODFLOW-2000. Os resultados da simulação mostraram a eficiência do bombeamento de compensação. A depleção do fluxo do córrego causada pelo SAC é igual a vazão mínima permissível e menor que a depleção projetada pelo plano abandonado. A aplicação do SAC na bacia de águas subterrâneas do Permilovo torna possível atingir a demanda durante os períodos de água limitada e evitar problemas ambientais

Аннотация

Рассматривается возможность применения комбинированных водозаборных систем (КВС) для обеспечения города Архангельска (северо-западная часть Российской Федерации) питьевой водой вместо использования в настоящее время загрязненных поверхностных вод Северной Двины. Перспективное месторождение подземных вод (Пермиловское) было найдено и разведано в 1980-е, был разработан проект эксплуатации водозабора, состоящий из традиционных береговых скважин. Однако предложенная в 1980-е водозаборная система не была введена в эксплуатацию, так как прогноз ее работы показал недопустимый ущерб речному стоку вплоть до полного его перехвата. Использование КВС предлагается для решения этой экологической проблемы. Основные водозаборные участки располагаются на берегу р. Ваймуги, их дебит обеспечивается речным стоком. Дефицит речного стока в маловодные периоды покрывается водоотбором из компенсационного водозабора, дебит которого обеспечивается емкостными запасами водоносного горизонта. Была разработана численная модель месторождения подземных вод с помощью программного пакета MODFLOW-2000. Результаты моделирования показали эффективность применения компенсационного водоотбора подземных вод. Величина сокращенного расхода реки, полученная при работе КВC, равна минимально допустимому расходу реки и выше, а величина ущерба речному стоку меньше, чем при работе проектной водозаборной системы. Применение КВС на Пермиловском месторождении подземных вод позволяет решить вопрос водообеспечения в дефицитные периоды и избежать экологических проблем.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bakker M, Anderson EI (2003) Steady flow to a well near a stream with a leaky bed. Ground Water 41(6):833–840. doi:10.1111/j.1745-6584.2003.tb02424.x

    Article  Google Scholar 

  • Bolgov MV, Ratkovich DY (1997) The problem of a hydrological feasibility study for projects of nuclear power stations (using the Kalinin nuclear power station as an example). Water Resour 24(3):338–346

    Google Scholar 

  • Bolgov MV, Shtengelov RS, Maslov AA, Filimonova EA (2012) Assessing the efficiency of combined use of surface water and groundwater for process water supply to Kalininskaya NPP. Water Resour 39(2):229–236. doi:10.1134/S0097807812010034

    Article  Google Scholar 

  • Bredehoeft J, Kendy E (2008) Strategies for offsetting seasonal impacts of pumping on a nearby stream. Ground Water 46(1):23–29. doi:10.1111/j.1745-6584.2007.00367.x

    Google Scholar 

  • Butler JJ Jr, Zlotnik VA, Tsou M-S (2001) Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream. Ground Water 39(5):651–659. doi:10.1007/s12665-009-0117-2

    Article  Google Scholar 

  • Chen X, Shu L (2002) Stream–aquifer interactions: evaluation of depletion volume and residual effects from groundwater pumping. Ground Water 40(3):284–290. doi:10.1111/j.1745-6584.2002.tb02656.x

    Article  Google Scholar 

  • Chen X, Yin Y (2001) Streamflow depletion: modeling of baseflow reduction and stream infiltration from seasonally pumped wells. J Am Water Resour Assoc 37(1):185–195

    Article  Google Scholar 

  • Chen X, Yin Y (2004) Semianalytical solutions for stream depletion in partially penetrating streams. Ground Water 42(1):92–96. doi:10.1111/j.1745-6584.2004.tb02454.x

    Article  Google Scholar 

  • Conrad LP, Beljin MS (1996) Evaluation of an induced infiltration model as applied to glacial aquifer systems. Water Resour Bull 32(6):1209–1220

    Article  Google Scholar 

  • Darama Y (2001) An analytical solution for stream depletion by cyclic pumping of wells near streams with semipervious beds. Water Resour Res 36(1):79–86

    Google Scholar 

  • Downing RA (1993) Groundwater resources, their development and management in the UK: an historical perspective. Q J Eng Geol 26:335–358

    Article  Google Scholar 

  • Filimonova YA (2009) An analysis of the balance of operational water discharge using a combined water-intake system. Mosc Univ Geol Bull 64(4):265–268. doi:10.3103/S0145875209040085

    Article  Google Scholar 

  • Filimonova EA, Baldenkov MG (2014) The combined water system as approach for tackling water scarcity in Permilovo groundwater basin. Geophysical Research Abstracts, vol 16. EGU General Assembly Vienna, Vienna

    Google Scholar 

  • Filimonova EA, Baldenkov MG (2015) Numerical simulation of seasonal groundwater pumping. Geophysical Research Abstracts, vol 17. EGU General Assembly Vienna, Vienna

    Google Scholar 

  • Filimonova EA, Shtengelov RS (2013) The dependence of stream depletion by seasonal pumping on various hydraulic characteristics and engineering factors. Hydrogeol J 21(8):1821–1832. doi:10.1007/s10040-013-1053-5

    Article  Google Scholar 

  • Glover RE, Balmer GG (1954) River depletion resulting from pumping a well near a river. Trans Am Geophys Union 35(3):468–470

    Article  Google Scholar 

  • Grinevsky SO (1991a) Obosnovanie geogidrologicheskih prognozov vodootbora na mestorogdeniah podzemnyh vod v dolinah malih rek [Assessing of geohydrological forecast of groundwater pumping in valleys of small rivers]. PhD Thesis, MSU, Russia

  • Grinevsky SO (1991b) Formirovanie ekspluatacionnyh zapasov vodozabora podzemnyh vod v doline maloi reki [Operational reserve of fresh groundwater reserves in the valleys of small rivers]. Moscow Univ Geol Bull Ser 4 3:87–92

  • Grinevsky SO, Shtengelov RS (1988) O prognozirovanii vliyaniya vodozaborov podzemnyh vod na stok malyh rek [Forecast of the influence of groundwater pumping on flow of small rivers]. Water Resour 4:24–32

    Google Scholar 

  • Hantush MS (1965) Wells near streams with semipervious beds. J Geophys Res 70(12):2829–2838

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. Open File Rep 00–92. US Geol Surv, Denver

  • Hunt B (1999) Unsteady stream depletion from ground water pumping. Ground Water 37(1):98–102

    Article  Google Scholar 

  • Jenkins CT (1968) Techniques for computing rate and volume of stream depletion by wells. Ground Water 6(2):37–46

    Article  Google Scholar 

  • Kendy E, Bredehoeft J (2006) Transient effects of groundwater pumping and surface water-irrigation returns on streamflow. Water Resour Res 42. doi:10.1029/2005WR004792

  • Khublaryan MG, Kovalevskii VS, Bolgov MV (2005) Concept of water resources system management based on the combined use of surface and subsurface waters. Water Resour 32(5):565–571

    Article  Google Scholar 

  • Konsebovskiy SY, Minkin EA (1989) Gidrogeologicheskie raschety pri ispol’zovanii podzemnykh vod dlya orosheniya [The hydrogeological estimations for groundwater pumping for irrigation]. Nauka, Moscow

  • Kovalevskii VS (2001) Kombinirovannoe ispol’zovanie resursov poverkhnostnykh i podzemnykh vod [Combined use of surface and groundwater resources]. Nauch. mir, Moscow

  • Kumsiashvily GP (1980) Regulirovanie stoka i okhrana podzemnykh vod [Regulation of the flow and protection of natural waters]. MSU, Moscow

    Google Scholar 

  • Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358. doi:10.1016/j.jhydrol.2005.07.040

    Article  Google Scholar 

  • Law F (1965) Integrated use of diverse sources. J Inst Water Eng 19:413–457

    Google Scholar 

  • Maddock T III, Vionnet LB (1998) Groundwater capture processes under a seasonal variation in natural recharge and discharge. Hydrogeol J 6:24–32

    Article  Google Scholar 

  • Maknoon R, Burges SJ (1978) Conjunctive use of ground and surface water. Am Water Works Assoc 70(8):419–424

    Google Scholar 

  • Maslov AA, Filimonova EA, Shtengelov RS (2010) Pit’evaya voda – dragocennoe poleznoe iskopaemoe [Fresh water – valuable mineral deposits]. Nature 10:38–46

    Google Scholar 

  • Mirzaev et al. (1991) Opyt kompleksnogo ispol’zovanii podzemnykh vod v stranah mira s razvitym orowaemym zemledeliem [Experience of complex use of groundwater in countries with progressive irrigated agriculture]. FAN, Tashkent, Uzbekistan

  • Owen M, Robinson VK (1978) Characteristics and yield in fissured Chalk. In: Thames groundwater scheme. Institution of Civil Engineers, London, pp 33–49

  • Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, groundwater flow model. US Geol Surv Open-File Rep 88–729, 113 pp

  • Rodriguez LB, Cello PA, Vionnet CA (2006) Modeling stream–aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol J 14:591–602. doi:10.1007/s10040-005-0472-3

    Article  Google Scholar 

  • Shestakov VM (1965) Teoreticheskie osnovy ocenki podpora, vodoponijeniya i drenaja [Theoretical base of estimation of an afflux, drawdowns and drainage]. MSU, Moscow

    Google Scholar 

  • Shtengelov RS, Filimonova EA (2011) Kombinirovannye vodozabornye sistemy kak metod optimal’nogo upravleniya vodnymi resursami [Combined water-intake systems: optimal method of water resources management] Amelioration Water Manage 6:21–24

  • Sophocleous MA, Koussis JLM, Perkins SP (1995) Evaluation of simplified stream-aquifer depletion models for water rights administration. Ground Water 33(4):579–588

    Article  Google Scholar 

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civ Eng 10:277–280

    Google Scholar 

  • Velikanov AL, Klyepov VI, Minkin EL (1994) Conjunctive use of surface and groundwater for Moscow agglomeration. Water Resour 21(6):711–714

    Google Scholar 

  • Vsevolghskij VA, Shtengelov RS, Dolgopolov VV et al (1986) Ocenka estestvennyh i ekspluatacionnyh zapasov podzemnyh vod Permilovskogo mestorogdeniya podzemnyh vod (dlya hozyaistvenno-pit’evogo vodosnabgeniya) [Estimation of groundwater resources of the Permilivo groundwater basin (for drinking water demand)], vols 1–2. Geology Faculty, MSU, Moscow

  • Wallace RB, Darama Y, Annable MD (1990) Stream depletion by cyclic pumping of wells. Water Resour Res 26(6):1263–1270

    Article  Google Scholar 

  • Wang P, Pozdniakov SP, Shestakov VM (2015) Optimum experimental design of a monitoring network for parameter identification at riverbank well fields. J Hydrol 523:531–541. doi:10.1016/j.jhydrol.2015.02.004

    Article  Google Scholar 

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38(3):423–429. doi:10.1007/s10040-006-0110-8

    Article  Google Scholar 

  • Wu B, Zheng Y, Wu X, Tian Y, Han F, Liu J, Zheng C (2015) Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: a surrogate-based approach. Water Resour Res 51:2153–2173. doi:10.1002/2014WR016653

  • Young RA, Bregehoeft JD (1972) Digital computer simulation for solving management problems of conjunctive use of ground and surface water. Water Resour Res 8(3):533–556

    Article  Google Scholar 

  • Zektser IS, Dzhamalov RG, Plemenov VA (1996) The possibility of ground water use for water supply of nuclear power plants with special reference to the Kalinin plant. Water Resour 23(4):468–470

    Google Scholar 

  • Zlotnik VA (2004) A concept of maximum stream depletion rate for leaky aquifers in alluvial valleys. Water Resour Res 40:W06507. doi:10.1029./2003WR002932

  • Zume J, Tarhule A (2008) Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol J 16:797–810. doi:10.1007/s10040-007-0268-8

    Article  Google Scholar 

Download references

Acknowledgements

These investigations were supported by the Russian Foundation for Basic Research No. 14-05-31325-mol-а and Russian Science Foundation No. 15-11-10015. The assistance and support of R. S. Shtengelov, S. P. Pozdnyakov, and others in the Hydrogeology Laboratory are acknowledged. The authors would like to thank three anonymous reviewers for their suggestions and corrections, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Filimonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonova, E.A., Baldenkov, M.G. A combined-water-system approach for tackling water scarcity: application to the Permilovo groundwater basin, Russia. Hydrogeol J 24, 489–502 (2016). https://doi.org/10.1007/s10040-015-1325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1325-3

Keywords

Navigation