Skip to main content

Advertisement

Log in

Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China

Evolution des eaux souterraines et détermination de la recharge de l’aquifère quaternaire dans le bassin de la rivière Shule, Nord-Ouest de la Chine

Evolución del agua subterránea y determinación de la recarga del acuífero Cuaternario en la Cuenca del Río Shule, Noroeste de China

中国西北地区疏勒河流域第四纪含水层地下水演化及其补给研究

Evolução das águas subterrâneas e determinação da recarga do aquífero Quaternário na bacia do Rio Shule, Noroeste da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater recharge and evolution in the Shule River basin, Northwest China, was investigated by a combination of hydrogeochemical tracers, stable isotopes, and radiocarbon methods. Results showed the general chemistry of the groundwater is of SO4 2− type. Water–rock reactions of halite, Glauber’s salt, gypsum and celestite, and reverse ionic exchange dictated the groundwater chemistry evolution, increasing concentrations of Cl, Na+, SO4 2−, Ca2+, Mg2+ and Sr2+ in the groundwater. The δ18O and δ2H values of groundwater ranged from −10.8 to −7.7 and −74.4 to −53.1 ‰, respectively. Modern groundwater was identified in the proluvial fan and the shallow aquifer of the fine soil plain, likely as a result of direct infiltration of rivers and irrigation returns. Deep groundwater was depleted in heavy isotopes with 14C ages ranging from 3,000 to 26,000 years, suggesting palaeowater that was recharged during the late Pleistocene and middle Holocene epochs under a cold climate. These results have important implications for groundwater management in the Shule River basin, since large amounts of groundwater are effectively being mined and a water-use strategy is urgently needed.

Résumé

L’évolution et la recharge des eaux souterraines dans le bassin de la rivière Shule, au Nord-Ouest de la Chine, ont été étudiées par une approche combinée des méthodes des traceurs hydrogéochimiques, des isotopes stables et du radiocarbone. Les résultats ont montré que la chimie générale des eaux souterraines est de type sulfatée. Les réactions entre l’eau et les roches constituées de halite, mirabilite, gypse et célestine, et les réactions d’échanges ioniques gouvernent l’évolution de la chimie des eaux souterraines, augmentant les concentrations en Cl, Na+, SO4 2−, Ca2+, Mg2+ et Sr2+ dans les eaux souterraines. Les valeurs de δ18O et δ2H des eaux de la nappe sont comprises respectivement entre −10.8 et −7.7 ‰ et entre −74.4 et −53.1 ‰. Des eaux récentes ont été mises en évidence dans l’aquifère peu profond de la plaine alluviale du fait, probablement, de l’infiltration directe d’eau de rivières et réinfiltration d’eaux d’irrigation. Les eaux souterraines profondes sont appauvries en isotopes lourds avec des âges 14C compris entre 3,000 et 26,000 ans, suggérant des eaux infiltrées durant le Pléistocène tardif et le milieu de l’Holocène, soit à des époques de climat froid. Ces résultats ont des implications importantes pour la gestion des eaux souterraines dans le bassin de la rivière Shule, du fait que des grandes quantités d’eaux souterraines sont effectivement exploitées et une stratégie d’usage de l’eau est nécessaire et urgente.

Resumen

Se investigó la evolución y la recarga del agua subterránea en la cuenca del río Shule, Noroeste de China, mediante una combinación de métodos de trazadores hidrogeoquímicos, isótopos estables y radiocarbono. Los resultados mostraron que la química general del agua subterránea es de tipo SO4 2−. Las reacciones del agua – roca en halita, sal de Glauber, yeso y celestita y el intercambio iónico inverso rigen la evolución química del agua subterránea, incrementándose las concentraciones de Cl, Na+, SO4 2−, Ca2+, Mg2+ and Sr2+. Los valores de δ18O y δ2H oscilaron entre 10.8 y −7.7 ‰ y −74.4 y −53.1 ‰, respectivamente. Se identificó agua subterránea moderna en el abanico proluvial y en el acuífero somero de la llanura de suelos finos, probablemente como resultado de la infiltración directa de los ríos y de los retornos del riego. El agua subterránea profunda está empobrecida en los isótopos pesados con edades 14C que van desde 3,000 hasta 26,000 años, lo que sugiere aguas fósiles que fueron recargadas durante el Pleistoceno tardío y el Holoceno medio bajo un clima frío. Estos resultados tienen importantes implicancias en la gestión del agua subterránea en la cuenca del río Shule, ya que las grandes cantidades están siendo efectivamente extraídas y se necesita con urgencia una estrategia para uso del agua.

摘要

本文通过联合应用水文地球化学指标,氢氧稳定同位素及放射性碳测年技术,研究了中国西北地区疏勒河流域地下水的补给演化。结果显示,该流域地下水的普遍类型为硫酸根型。岩盐、芒硝、石膏、天青石以及反向离子交换决定了地下水的化学演化,使得水中的氯离子、钠离子、 硫酸根离子、 钙离子、镁离子和锶离子浓度升高。地下水中δ18O和δ2H的数值分别介于−10.8到−7.7 ‰ 和−74.4到−53.1 ‰之间。现代地下水分布在洪积扇以及细土平原浅部含水层中,是由河水直接下渗和灌溉回归补给形成的。深层地下水中同位素贫乏,年代在3,000到26,000年之间,指示了这些地下水形成于晚更新世到全新世中期的寒冷气候条件下。由于研究区开采的大量地下水是古水,因此制定合理的水资源开采战略已迫在眉睫。

Resumo

A recarga e evolução das águas subterrâneas na bacia do Rio Shule, Noroeste chinês, foi investigado por meio da combinação dos seguintes métodos: traçadores hidrogeoquímicos, isótopos estáveis e radiocarbono. Os resultados mostraram que a química geral da água subterrânea é do tipo SO4 2−. As reações água-rocha de halite, sais de Glauber, gipsita e celestita, e troca iônica reversa ditam a evolução química das águas subterrâneas, aumentando as concentrações de Cl, Na+, SO4 2−, Ca2+, Mg2+ e Sr2+ nas águas subterrâneas. Os valores de δ18O e δ2H das águas subterrâneas variaram de −10.8 a −7.7 ‰ e −74.4 a −53.1 ‰, respectivamente. Uma água subterrânea mais moderna foi identificada no leque proluvial e no aquífero raso da planície com solo fino, provavelmente como resultado de infiltração direta de rios e da irrigação. Águas subterrâneas profundas sofreram depleção em isótopos pesados com idades (14C) variando de 3,000 a 26,000 anos, surgindo tratar-se de água paleolítica cuja recarga ocorreu durante o final da era do Pleistoceno e meio do Holoceno sob clima frio. Esses resultados têm importantes implicações para o gerenciamento das águas subterrâneas na bacia do Rio Shule, uma vez que grandes quantidades de águas subterrâneas estão sendo efetivamente mineiradas e é urgente a necessidade de uma estratégia de uso da água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal PK, Araguas-Araguas L, Choudhry M, Duren MV, Froehlich K (2014) Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater 52(1):20–24

    Article  Google Scholar 

  • Bailey K (1994) Numerical taxonomy and cluster analysis. Typol Taxonom 34:24

    Google Scholar 

  • Bao W, Li J (2006) The study of the ecology effect of Shule River basin resettlement-cum-irrigation development project (in Chinese). Soil Water Conserv Sci Technol 6:4–6

    Google Scholar 

  • Barberá JA, Andreo B (2015) Hydrogeological processes in a fluviokarstic area inferred from the analysis of natural hydrogeochemical tracers: the case study of eastern Serranía de Ronda (S Spain). J Hydrol 523:500–514

    Article  Google Scholar 

  • Beyerle U, Purtschert R, Aeschbach-Hertig W, Imboden DM, Loosli HH, Wieler R, Kipfer R (1998) Climate and groundwater recharge during the last glaciation in an ice-covered region. Sci Rep 282:731–734

    Google Scholar 

  • Bühl A (2012) SPSS 20: Einführung in die moderne Datenanalyse [Introduction to modern data analysis]. Pearson, London

  • Chen LH, Qu YG (1992) Rational development and use of land resources in Hexi region (in Chinese). Science Press, Beijing, pp 65–100

    Google Scholar 

  • Chen ZY, Nie ZL, Zhang GH, Wan L, Shen JM (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14:1635–1651

    Article  Google Scholar 

  • Chen FH, Yu ZC, Yang ML, Ito E, Wang SM, Madsen DB, Huang XZ, Zhao Y, Sato T, Birks JB, Boomer I, Chen JH, An CB, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27(3):351–364

    Article  Google Scholar 

  • Chen ZY, Wei W, Liu J, Wang Y, Chen J (2011) Identifying the recharge sources and age of groundwater in the Songnen Plain (Northeast China) using environmental isotopes. Hydrogeol J19:163–176

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, 328 pp

    Google Scholar 

  • Clarke R, Lawrence A, Foster S (1996) Groundwater: a threatened resource. United Nations Environment Programme Environment Library No. 15, UNEP, Nairobi, Kenya

  • Craig H (1957) Isotope standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Dando WA (2005) Asia: climates of Siberia, central and East Asia. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Dordrecht, The Netherlands, pp 102–114

    Chapter  Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la Ville de Dijon [The public fountains of the city of Dijon]. Dalmont, Paris

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Ding H, Zhao C, Huang X (2001) The ecological environment and desertification in the Shule River basin (in Chinese). Arid Zone Res 18:5–10

    Google Scholar 

  • Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire F (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin basin, North West China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • Fontes JC (1980) Environmental isotopes in ground water hydrology. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam, pp 75–140

    Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Gansu Geology Survey (1978) The report and map for hydrogeological survey in the Shula River basin (1: 200 000). Gansu Science and Technology Press, Lanzhou, China

    Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the last glacial maximum. Quat Sci Rev 19(1):189–211

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008a) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Ma J, Scanlon BR (2008b) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910

    Article  Google Scholar 

  • Geyh MA (2000) An overview of 14C analysis in the study of groundwater. Radiocarbon 42:99–114

    Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  • Han LF, Plummer LN, Aggarwal P (2014) The curved 14C vs. δ13C relationship in dissolved inorganic carbon: a useful tool for groundwater age and geochemical interpretations. Chem Geol 387:111–125

    Article  Google Scholar 

  • Hchaichi Z, Abid K, Zouari K (2014) Use of hydrochemistry and environmental isotopes for assessment of groundwater resources in the intermediate aquifer of the Sfax basin (southern Tunisia). Carbonates Evaporites 29:177–192

    Article  Google Scholar 

  • He JH, Ma JZ, Zhang P, Tian LM, Zhu GF, Edmunds WM, Zhang QH (2012) Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China. Appl Geochem 27:866–878

    Article  Google Scholar 

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. Springer, New York

    Book  Google Scholar 

  • Huang P, Wang Z (2010) Impact of human activity on groundwater recharge in Shule River basin, Northwest China. AGU Fall Meet Abstr 1:1057

    Google Scholar 

  • Huang TM, Pang ZH, Edmunds M (2013) Soil profile evolution following land-use change: implications for groundwater quantity and quality. Hydrol Process 27:1238–1252

    Article  Google Scholar 

  • Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of ground water by the 14C method. In: Recent researches in the fields of hydrosphere. Atmos Nucl Chem 263–283

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New York, pp 83–113

    Chapter  Google Scholar 

  • Landmeyer JE, Stone PA (1995) Radiocarbon and δ13C values related to ground water recharge and mixing. Ground Water 33(2):227–234

    Article  Google Scholar 

  • Li JJ, Wen S, Zhang Q (1979) Study on the times, extent and form of Tibet plateau upheaving (in Chinese). Sci China 9:608–616

    Google Scholar 

  • Li WZ, Yan P, Liu YG, Ding LG (2011) Phreatic water recharged source on the northeast of Kumtag Desert (in Chinese). J Desert Res 31(6):1617–1622

    Google Scholar 

  • Lis GP, Wassenaar LI, Hendry MJ (2008) High precision laser spectroscopy D/H and measurements of microliter natural water samples. Anal Chem 80(1):287–293

    Article  Google Scholar 

  • Liu YP, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464:116–126

    Article  Google Scholar 

  • Liu JR, Song XF, Yuan GF, Sun XM, Liu X, Chen F, Wang ZM, Wang SQ (2008) Characteristics of δ18O in precipitation over Northwest China and its water vapor sources. Acta Geograph Sin 63(1):12–22

    Google Scholar 

  • Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to groundwater. Oxford University Press, New York

    Google Scholar 

  • Luoma S, Okkonen J, Korkka-Niemi K, Hendriksson N, Backman B (2015) Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland. Hydrol Earth Syst Sci 19(3):1353–1370

    Article  Google Scholar 

  • Ma JZ, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243

    Article  Google Scholar 

  • Ma JZ, Edmunds WM, He JH, Jia B (2009) A 2000 year geochemical record of palaeoclimate and hydrology derived from dune sand moisture. Paleogeogr Paleoclimatol Paleoecol 276:38–46

    Article  Google Scholar 

  • Ma JZ, Pan F, Chen LH, Edmunds WM, Ding ZY, He JH, Zhou KP, Huang TM (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang City, NW China. Appl Geochem 25:996–1007

    Article  Google Scholar 

  • Ma JZ, He JH, Qi S, Zhu GF, Zhao W, Edmunds WM, Zhao YP (2013) Groundwater recharge and evolution in the Dunhuang Basin, Northwestern China. Appl Geochem 28:19–31

    Article  Google Scholar 

  • Mendizabal I, Stuyfzand PJ, Wiersma AP (2011) Hydrochemical system analysis of public supply well fields, to reveal water-quality patterns and define groundwater bodies: The Netherlands. Hydrogeol J 19(1):83–100

    Article  Google Scholar 

  • Meyer B, Tapponnier P, Metivier F, Bourjot L, Gaudemer Y, Peltzer G, Guo SM, Chen ZT (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int 135:1–47

    Article  Google Scholar 

  • Mook WG (1976) The dissolution-exchange model for dating groundwater with 14C. In: Interpretation of environmental isotope and hydrochemical data in groundwater hydrology. IAEA, Vienna, pp 213–225

    Google Scholar 

  • Münnich KO (1957) Messung des 14C-Gehalts von hartem Grundwasser [Measurement of the 14C content of hard groundwater]. Naturwissenschaften 44:32–39

    Article  Google Scholar 

  • Nimmo JR, Healy RW, Stonestrom DA (2005) Aquifer recharge. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological science, vol 4. Wiley, Chichester, UK, pp 2229–2246

    Google Scholar 

  • Okkonen J, Kløve B (2012) Assessment of temporal and spatial variation in chemical composition of groundwater in an unconfined esker aquifer in the cold temperate climate of northern Finland. Cold Reg Sci Technol 71:118–128

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 310:99–4259

    Google Scholar 

  • Pophare AM, Lamsoge BR, Katpatal YB, Nawale VP (2014) Impact of over-exploitation on groundwater quality: a case study from WR-2 Watershed, India. J Earth Syst Sci 123(7):1541–1566

    Article  Google Scholar 

  • Qu JX, Yu SB (2007) The transformation relationship and chemical characteristics of the surface water and groundwater in the Shule River basin (in Chinese). Gansu Sci Technol 23(4):119–121

    Google Scholar 

  • Ray RK, Mukherjee R (2008) Reproducing the piper trilinear diagram in rectangular coordinates. Groundwater 46(6):893–896

    Google Scholar 

  • Sarah S, Ahmed S, Boisson A, Violette S, Marsily GD (2014) Projected groundwater balance as a state indicator for addressing sustainability and management challenges of over exploited crystalline aquifers. J Hydrol 519:1405–1419

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Scherberg J, Baker T, Selker JS, Henry R (2014) Design of managed aquifer recharge for agricultural and ecological water supply assessed through numerical modeling. Water Resour Manag 28(14):4971–4984

    Article  Google Scholar 

  • Schoeller H (1965) Hydrodynamique dans le karst [Hydrodynamics of karst]. Actes du Colloques de Doubronik. IAHS/UNESCO, Wallingford, UK/Paris, pp 3–20

    Google Scholar 

  • Schot PP, van der Wal J (1992) Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. J Hydrol 134:297–313

    Article  Google Scholar 

  • Simmers I (1997) Recharge of phreatic aquifers in (semi)-arid areas. IAH International Contributions to Hydrogeology, 19A.A. Balkema, Rotterdam, pp 19–98

    Google Scholar 

  • StatSoft (1995) STATISTICA for Windows, 1995, vol III: statistics II, 2nd edn. StatSoft, Tulsa, OK, pp 3197–3234

  • Tamers MA (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239

    Article  Google Scholar 

  • Tapponnier P, Meyer B, Avouac JP, Peltzer G, Gaudemer Y, Guo SM, Xiang HF, Yin KL, Chen ZT, Cai SH, Dai HG (1990) Active thrusting and folding in the Qilian Mountains, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet Sci Lett 97:382–403

    Article  Google Scholar 

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology. IAEA, Vienna, pp 255–368

    Google Scholar 

  • Vogel JS, Nelson DE, Southon JR (1987) C-14 background levels in an accelerator mass spectrometry system. Radiocarbon 29(3):323–333

    Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20), L20402

    Google Scholar 

  • Wang G, Han J, Zhou L, Xiong X, Wu Z (2005a) Carbon isotope ratios of plants and occurrence of C4 species under different soil moisture regimes in arid region of North West China. Physiol Plant 125:74–81

    Article  Google Scholar 

  • Wang JH, Liao KT, E YZ, Su ZZ, Zhai XW, Liu HJ, Tang JN, Ding F, Zhang JC, Zheng QZ (2005b) Preliminary results of the comprehensive scientific investigation in the Kumtag Desert (in Chinese). Gansu Sci Technol 21(10):6–8

    Google Scholar 

  • Wang NL, Zhang SB, He JQ, Pu JC, Wu XB, Jiang X (2009) Tracing the major source area of the mountainous runoff generation of the Heihe River in Northwest China using stable isotope technique. Chin Sci Bull 54:2751–2757

    Article  Google Scholar 

  • Wang P, Yu JJ, Zhang YC, Liu CM (2013) Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, Northwest China. J Hydrol 476:72–86

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 69:236–244

    Article  Google Scholar 

  • Xia J, Zhang L, Liu CM, Yu JJ (2007a) Towards better water security in North China. Water Resour Manag 21(1):233–247

    Article  Google Scholar 

  • Xia X, Wang F, Zhao Y (2007b) Lop Nur in China (in Chinese). Science Press, Beijing, pp 3–5

    Google Scholar 

  • Zhao LJ, Lin L, Xiao HL, Cheng GD, Zhou MX, Yang YG, Li CZ, Zhou J (2011) Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River Basin. Chin Sci Bull 56:406–416

    Article  Google Scholar 

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, Northwest China. Hydrogeol J 16:167–182

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Science Foundation of China (Nos. 41402200, 41271039) and the Fundamental Research Funds for the Central Universities of Lanzhou University. We thank Mrs. Jingfang Wang and Mrs. Yanhui Pan in Lanzhou University and Dr. Darden Hood in the Beta Analytic Inc. for assistance in the laboratory analysis. We would also like to thank Alison Beamish at the University of British Columbia for her assistance with English language and grammatical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Ma, J., Zhao, W. et al. Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China. Hydrogeol J 23, 1745–1759 (2015). https://doi.org/10.1007/s10040-015-1311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1311-9

Keywords

Navigation