Skip to main content
Log in

Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy

Modèle de transport réactif appliqué à la dissolution du gypse dans un aquifère karstique côtier des Pouilles, Italie du Sud

Modelado de transporte reactivo de la disolución de yeso en un acuífero kárstico costero en Puglia, sur de Italia

意大利南部普利亚区沿海岩溶含水层石膏溶解反应-传输模拟

Modelagem de transporte reativo da dissolução de gipso em um aquífero cárstico na região costeira da Apúlia, sul da Itália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The gypsum coastal aquifer of Lesina Marina (Puglia, southern Italy) has been affected by sinkhole formation in recent decades. Previous studies based on geomorphologic and hydrogeological data ascribed the onset of collapse phenomena to the erosion of material that fills palaeo-cavities (suffosion sinkholes). The change in the hydrodynamic conditions of groundwater induced by the excavation of a canal within the evaporite formation nearly 100 years ago was identified as the major factor in triggering the erosion, while the contribution of gypsum dissolution was considered negligible. A combined reactive-transport/density-dependent flow model was applied to the gypsum aquifer to evaluate whether gypsum dissolution rate is a dominant or insignificant factor in recent sinkhole formation under current hydrodynamic conditions. The conceptual model was first defined with a set of assumptions based on field and laboratory data along a two-dimensional transect of the aquifer, and then a density-dependent, tide-influenced flow model was set up and solved using the numerical code SEAWAT. Finally, the resulting transient flow field was used by the reactive multicomponent transport model PHT3D to estimate the gypsum dissolution rate. The validation tests show that the model accurately represents the real system, and the multi-disciplinary approach provides consistent information about the causes and evolution time of dissolution processes. The modelled porosity development rate is too low to represent a significant contribution to the recent sinkhole formation in the Lesina Marina area, although it justifies cavity formation and cavity position over geological time.

Résumé

L’aquifère gypseux côtier de Lesina Marina (Pouilles, Italie du Sud) a été affecté dans les dernières décennies par la formation d’un gouffre. Les études précédentes, basées sur des données géomorphologiques et hydrogéologiques ont imputé le démarrage du phénomène d’effondrement à l’érosion du matériau qui remplit les paléo-cavités (gouffres de suffosion). Le changement des conditions hydrodynamiques souterraines, induit par le creusement d’un chenal à l’intérieur de la formation évaporitique il y a environ 100 ans, a été identifié comme le facteur principal du déclenchement de l’érosion, tandis que la contribution de la dissolution du gypse était considérée comme négligeable. Un modèle d’écoulement couplé au transport réactif et à la prise en considération de la densité a été appliqué à l’aquifère gypseux afin de déterminer si le taux de dissolution du gypse est un facteur dominant ou au contraire non significatif pour la formation récente du gouffre dans les conditions hydrodynamiques actuelles. Le modèle conceptuel a d’abord été défini à l’aide d’une série d’hypothèses basées sur des données de terrain et des données de laboratoire le long d’un transect bi-dimensionnel de l’aquifère, et ensuite un modèle d’écoulement prenant en considération l’effet de la densité et l’influence de la marée a été établi et solutionné par utilisation du code numérique SEAWAT. Pour finir, le domaine de l’écoulement transitoire résultant a été utilisé dans le modèle de transport réactif multi-composant PHTD3 pour estimer le taux de dissolution du gypse. Les tests de validation montrent que le modèle reproduit fidèlement le système réel et que l’approche multi-disciplinaire apporte une information pertinente sur les causes et l’évolution dans le temps du processus de dissolution. Le taux de développement de la porosité modélisée est trop faible pour représenter une contribution significative à la formation récente du gouffre de la zone de Lesina Marina, mais il justifie la formation et la localisation de la cavité au cours des temps géologiques.

Resumen

El acuífero costero de yeso en Lesina Marina (Puglia, sur de Italia) se ha visto afectado por la formación de sumideros en las últimas décadas. Estudios previos basados en datos geomorfológicos e hidrogeológicos atribuyen la aparición de los fenómenos de colapso a la erosión de material que llena paleo-cavidades (sumideros por desplome). El cambio inducido en las condiciones hidrodinámicas del agua subterránea por la excavación de un canal dentro de la formación evaporítica hace casi 100 años fue identificado como un factor importante en el desencadenamiento de la erosión del agua subterránea, mientras que la contribución de la disolución de yeso se consideró despreciable. Se aplicó al acuífero de yeso un modelo combinado de flujo y de transporte reactivo dependiente de la densidad para evaluar si la velocidad de disolución de yeso es un factor dominante o insignificante en la reciente formación de sumideros bajo las condiciones hidrodinámicas actuales. El modelo conceptual se definió por primera vez con un conjunto de suposiciones basadas en datos de laboratorio y de campo a lo largo de una transecta en dos dimensiones del acuífero, y luego se creó un modelo de flujo influenciado por la marea dependiente de la densidad que se resuelve utilizando el código numérico SEAWAT. Por último, el campo de flujo transitorio resultante fue utilizado para el modelo multicomponente de transporte reactivo PHT3D para estimar la velocidad de disolución de yeso. Las pruebas de validación demuestran que el modelo representa con exactitud el sistema real, y el enfoque multidisciplinario proporciona constante información sobre las causas y la evolución en el tiempo de los procesos de disolución. La ritmo modelado de la porosidad desarrollada es demasiado baja para representar una contribución significativa a la formación del reciente hundimiento en la zona Lesina Marina, aunque justifica la formación de cavidades y la posición de las cavidades a través del tiempo geológico.

摘要

最近几十年来,(意大利南部普利亚区)Lesina Marina石膏沿海含水层受到落水洞构造的影响。先前根据地貌和水文地质资料进行的研究认为,塌陷现象是由填充古洞穴(潜蚀落水洞)的物质受到侵蚀造成的。将近100年前蒸发岩层内挖掘河道引起的地下水水动力条件的变化确定为导致侵蚀的主要因素,而石膏溶解对侵蚀的贡献微不足道。一个组合的反应-传输/与密度有关的水流模型应用到石膏含水层,以评估在目前水动力条件下石膏溶解速度是否是近代落水洞形成的主要因素或无关紧要的因素。根据沿含水层二维横断面室外和室内资料采用一套假设首次明确了概念模型,然后,利用数值代码SEAWAT建立和解答了与密度有关的、受潮汐影响的水流模型。最后,反应的多成分传输模型PHT3D利用产生的瞬时水流场估算了石膏溶解速度。验证试验显示,模型准确地代表着真实的系统,多方论证方法提供了溶解过程原因和演化时间方面的一致信息。模拟的孔隙发育速度太慢以至于不能代表对Lesina Marina地区近代落水洞形成所做的重要贡献,尽管它在过去的地质时代中对洞穴形成和洞穴位置确实发挥过一定的作用。

Resumo

O aquífero costeiro formado por rochas ricas em gipso da região de Lesina Marina (Apúlia, sul da Itália) foi afetada pela formação de dolinas nas últimas décadas. Estudos anteriores, baseados em dados geomorfológicos e hidrogeológicos, atribuiram o aparecimento dos fenômenos de colapso à erosão do material de preenchimento das paleo-cavidades (dolinas de sufusão). A alteração das condições de fluxo das águas subterrâneas induzida pela escavação de um canal no interior da formação evaporítica, há aproximadamente 100 anos, foi identificada como o fator principal do desencadeamento da erosão, enquanto a contribuição da dissolução do gipso foi considerada insignificante. Um modelo de fluxo combinado com o de transporte reativo dependente da densidade foi aplicado ao aquífero, para se avaliar se a taxa de dissolução do gipso representa um fator dominante ou insignificante na formação de dolinas recentes sob as condições hidrodinâmicas atuais. O modelo conceitual foi inicialmente definido com um conjunto de suposições baseadas em dados de campo e de laboratório, obtidas ao longo de um transecto bidimensional do aquífero, e em seguida o modelo de fluxo dependente da densidade, influenciado pelas marés foi desenvolvido e solucionado empregando-se o código numérico SEAWAT. Finalmente, o modelo de fluxo transiente resultante foi usado pelo modelo de transporte reativo de componentes múltiplos PHT3D, para estimar as taxas de dissolução de gipso. Os testes de validação mostram que o modelo representa com precisão o sistema real, e a abordagem multi-disciplinar fornece informações consistentes sobre as causas e evolução temporal dos processos de dissolução. A taxa da evolução da porisidade modelada é demasiada baixa para representar uma contribuição significativa na formação de dolinas recentes na área de Lesina Marina, embora justifique a formação e a existência da cavidades ao longo do tempo geológico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acero P, Gutiérrez F, Galve JP, Auqué LF, Carbonel D, Gimeno MJ, Gomez JB, Asta MP, Yechieli Y (2013) Hydrogeochemical characterization of an evaporite karst area affected by sinkholes (Ebro Valley, NE Spain). Geol Acta 11(4):389–407. doi:10.1344/105.000002052

    Google Scholar 

  • Amendolagine M, Dell’Anna L, Ventriglia U (1964) Le rocce ignee alla Punta delle Pietre Nere presso Lesina (Provincia di Foggia) [The igneous rocks at the Punta delle Pietre Nere near Lesina (Foggia Province)]. Period Mineral 33:337–444

    Google Scholar 

  • APAT-IRSA-CNR (2003) Metodi analitici per le acque [Analytical methods for waters], APAT-Rapporti 29/2003, APAT-IRSA-CNR, Rome

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, The Netherlands

    Book  Google Scholar 

  • Ataie-Ashtiani B, Volkerb RE, Lockingtonb DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216:17–31

    Article  Google Scholar 

  • Baxter GP, Wallace CC (1916) Changes in volume upon solution in water of halogen salts of alkali metals, II. J Am Chem Soc 38:70–104. doi:10.1021/ja02258a010

    Article  Google Scholar 

  • Belviso R, Cherubini C, Del Prete M, Federico A, Tittozzi P (1977) Primi dati di capacità di scambio cationico, contenuto in acqua igroscopica e pH delle argille varicolori dell’Appennino Meridionale [Preliminary data of cation exchange capacity, hygroscopic water content, and pH of the Varicoloured clays of Southern Apennines]. In: Atti del 2° Congr. Naz. sulle Argille, Bari, Italy, 14–16 October 1976

  • Bigazzi G, Laurenzi A, Principe C, Bocchini D (1996) New geochronological data on igneous rocks and evaporites of the Pietre Nere Point Gargano Peninsula, southern Italy. Boll Soc Geol Ital 115:439–448

    Google Scholar 

  • Birk S (2002) Characterization of Karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum Karst, vol 60 of Tübinger Geowissenschaftliche Arbeiten, Reihe C. Institut und Museum für Geologie und Paläontologie der Universität Tübingen, Tübingen, Germany

  • Calaforra JM (1998) Karstologia de yesos [Karstology of gypsum]. Monografias Ciencia y tecnologia, 3, PhD Thesis, Universidad de Almeria, Spain, 384 pp

  • Calaforra JM, Pulido-Bosch A (1999) Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, South Spain. Geomorphology 29:251–264

    Article  Google Scholar 

  • Calaforra JM, Pulido-Bosch A, Lopez-Chicano M (2002) Gypsum karst in the Betic Cordillera (South Spain). Carbonates Evaporites 17(2):134–141

    Article  Google Scholar 

  • Castellanza R, Nova R, Orlandi G (2010) Evaluation and remediation of an abandoned gypsum mine. J Geotech Geoenviron 136(4):629–639

    Article  Google Scholar 

  • Chapuis RP (1989) Shape factors for permeability tests in boreholes and piezometers. Groundwater 27(5):647–654

    Article  Google Scholar 

  • Cotecchia V, Canitano A (1954) Sull’affioramento delle “Pietre Nere” al lago di Lesina [On the outcrop of the “Black Stones” at Lesina Lake]. Boll Soc Geol Ital 73:3–18

    Google Scholar 

  • Dausman A, Langevin CD (2002) Representing hydrodynamic dispersion in saltwater intrusion models of different temporal scales. American Water Resources Association’s Spring Specialty Conference on “Coastal Water Resources”, New Orleans, LA, May 2002

  • Dausman AM, Langevin CD (2005) Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida. US Geol Surv Sci Invest Rep 2004-5256

  • Fagundo JR, Rodríguez JE, De La Torre J, Arencibia JA, Forti P (2002) Hydrologic and hydrochemical characterization of the Punta Alegre gypsum karst (Cuba). Bol Soc Venez Espel 36:11–16. http://www2.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0583-77312002000100003&lng=es&nrm=iso. Accessed April 2015

  • Fidelibus MD, Gutiérrez F, Spilotro G (2011) Human-induced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy). Eng Geol 118:1–19. doi:10.1016/j.enggeo.2010.12.003

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of field-scale dispersion in aquifers. Water Resour Res 28:1955–1974

    Article  Google Scholar 

  • Ghiglieri G, Oggiano G, Fidelibus MD, Alemayehu T, Barbieri G, Vernier A (2009) Hydrogeology of the Nurra Region, Sardinia (Italy): basement-cover influences on groundwater occurrence and hydrogeochemistry. Hydrogeol J 17(2):447–466

    Article  Google Scholar 

  • Gomis-Yagües V, Boluda-Botella N, Ruiz-Bevia F (2000) Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. J Hydrol 228:48–55

    Article  Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geol Surv Tech Water Resources Invest, Book 6, Chapter A7, Supersedes OFR 01–434, 77 pp

  • Gutiérrez F, Cooper AH (2002) Evaporite dissolution subsidence in the historical city of Calatayud, Spain: damage appraisal and prevention. Nat Hazards 25:259–288

    Article  Google Scholar 

  • Gutiérrez F, Guerrero J, Lucha P (2008) A genetic classification of sinkholes illustrated from evaporate paleokarst exposures in Spain. Environ Geol 53:993–1006. doi:10.1007/s00254-007-0727-5

    Article  Google Scholar 

  • Herman JS, Back W (1984) Mass transfer simulation of diagenetic reactions in the groundwater mixing zone, In: Geological Society of America Abstracts, 97th Annual Meeting of the Geological Society of America, Reno, NV, July 1984, Abstracts, p 16

  • Johnson KS (2005) Subsidence hazards due to evaporite dissolution in the United States. Environ Geol 48:395–409. doi:10.1007/s00254-005-1283-5

    Article  Google Scholar 

  • Klimchouk AB, Aksem SD (2005) Hydrochemistry and solution rates in gypsum karst: case study from the Western Ukraine. Environ Geol 48:307–319. doi:10.1007/s00254-005-1277-3

    Article  Google Scholar 

  • Klimchouk A, Lowe A, Cooper A, Sauro U (eds) (1996) Gypsum karst of the world. Int Jo Speleol 25(3/4). http://www.karstportal.org/node/6601. Accessed April 2015

  • La Licata I, Langevin CD, Dausman AM, Alberti L (2011) Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers. Hydrogeol J 19:1313–1322. doi:10.1007/s10040-011-0763-9

    Article  Google Scholar 

  • Langevin CD (2003) Stochastic ground water flow simulation with a fracture zone continuum model. Groundwater 41(5):587–601

    Article  Google Scholar 

  • Langevin CD, Zygnerski M (2012) Effect of Sea-level rise on salt water intrusion near a coastal well field in southeastern Florida. Groundwater. doi:10.1111/j.1745-6584.2012.01008.x

    Google Scholar 

  • Langevin CD, Thorne D, Dausman AM, Sukop MC, Guo W (2008) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. US Geol Surv Tech Methods, Book 6, Chapter A22

  • Lefranc E (1936) Procédé de mesure de la perméabilité des sols dans les nappes aquiferes et application au calcul du debit des puits. [A method for measuring the soil permeability in aquifers and application to the calculation of the flow-rate of wells]. Le Génie Civ CIX(15):306–308

    Google Scholar 

  • Lefranc E (1937) La théorie des poches absorbantes et son application a’ la détermination du coefficient de perméabilité en place et au calcul du débit des nappes d’eau. [The theory of the absorbent pockets and its application to the determination of the permeability coefficient in situ and to the calculation of groundwater discharge rate]. Le Genie Civ CXI(20):409–413

    Google Scholar 

  • Liu CW, Chen JF (1996) The simulation of geochemical reactions in the Heng-Chung limestone formation, Taiwan. Appl Math Model 20:549–558

    Article  Google Scholar 

  • Lusczynski NJ (1961) Head and flow of ground water of variable density. J Geophys Res 66(12):4247–4256

    Article  Google Scholar 

  • Mao X, Prommer H, Barry DA, Langevin CD, Panteleit B, Li L (2006) Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ Model Software 21:615–628. doi:10.1016/j.envsoft.2004.11.008

    Article  Google Scholar 

  • May A, Carsana M, Castellanza R, Spada M, Orlandi GM, Bianchi S, Bertolini L (2009) Rischi di crollo catastrofico di cavità antropiche: le ex gallerie minerarie di gesso allagate di Santa Brigida (BG)—studi, modellazioni ed opere pilota di consolidamento. [Risks of catastrophic collapse of anthropogenic cavities: the former flooded gypsum mine tunnels of Santa Brigida (BG)—studies, modeling and pilot works of consolidation]. In Nisio S (ed) 2nd Int. Workshop, I Sinkholes: Gli sprofondamenti catastrofici nell’ambiente naturale ed in quello antropizzato, Rome, 3–4 December 2009, ISPRA Serie Atti 2009, pp 817–843

  • Mulligan AE, Langevin CD, Post VEA (2011) Tidal boundary conditions in SEAWAT. Groundwater 49(6):866–879. doi:10.1111/j.1745-6584.2010.00788.x

    Article  Google Scholar 

  • National Research Council (U.S.) (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC. http://www.nap.edu/openbook.php?record_id=2309. Accessed March 2015

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259

  • Post VEA, Prommer H (2007) Multicomponent reactive transport simulation of the Elder problem: effects of chemical reactions on salt plume development. Water Resour Res 43(10):W10404. doi:10.1029/2006WR005630

    Google Scholar 

  • Post VEA, von Asmuth JR (2013) Review: hydraulic head measurements—new technologies, classic pitfalls. Hydrogeol J 21:737–750. doi:10.1007/s10040-013-0969-0

    Article  Google Scholar 

  • Prommer H, Barry DA, Zheng C (2003) MODFLOW/MT3DMS-based reactive multicomponent transport modelling. Groundwater 41(2):1–11

    Article  Google Scholar 

  • Raines MA, Dewers TA (1997) Mixed transport reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst. Chem Geol 140:29–48

    Article  Google Scholar 

  • Rezaei M, Sanz E, Raeisi E, Ayora C, Vázquez-Suñé E, Carrera J (2005) Reactive transport modelling of calcite dissolution in the fresh–salt water mixing zone. J Hydrol 311:282–298. doi:10.1016/j.jhydrol.2004.12.017

    Article  Google Scholar 

  • Romanov D, Dreybrodt W (2006) Evolution of porosity in the saltwater–freshwater mixing zone of coastal carbonate aquifers: an alternative modelling approach. J Hydrol 329:661–673. doi:10.1016/j.jhydrol.2006.03.030

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Hiller T, Epting J, Huggenberger P (2012) Karstification of an aquifer along the Birs River, Switzerland: a modeling approach. Eng Geol 141–142:9–23

    Article  Google Scholar 

  • Runnels DD (1969) Diagenesis, chemical sediments, and the mixing of natural waters. J Sed Petrol 39:1188–1201

    Google Scholar 

  • Sáinz ÁM, Molinero JJ, Saaltink MW (2010) Numerical modelling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena. In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in karst media. Springer, Berlin, pp 237–242

    Chapter  Google Scholar 

  • Sanford WE, Konikow LF (1989) Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers. Water Resour Res 25:655–667

    Article  Google Scholar 

  • Sanz E, Ayora C, Carrera J (2011) Calcite dissolution by mixing waters: geochemical modeling and flow-through experiments. Geol Acta 9(1):67–77. doi:10.1344/105.000001652

    Google Scholar 

  • Selroos JO, Walker DD, Strom A, Gylling B, Follin S (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rock. J Hydrol 257:174–188

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Tulipano L, Cotecchia, V, Fidelibus, MD (1990) An example of the multitracing approach in studies of karstic and coastal aquifers, In: Gunay G, Johnson I, Back W (eds) Proc. Int. Symp. and Field Seminar, Hydrogeological Processes in Karst Terranes, Antalya, Turkey, October 1990, IAHS Publ. 207, IAHS, Wallingford, UK, pp 381–389

  • Whitaker FF, Smart PL (1997) Groundwater circulation and geochemistry of a karstified bank-marginal fracture system, South Andros Island, Bahamas. J Hydrol 197(1–4):293–315

    Article  Google Scholar 

  • Worthington SRH (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling, vol 5. Special Pub., Karst Waters Institute, Leesburg, VA, pp 30–37

Download references

Acknowledgements

The authors are very grateful to Christian. D. Langevin of the US Geological Survey for his substantial contribution to the work and to the anonymous reviewers who gave very useful suggestions for a more coherent interpretation of model results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dolores Fidelibus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campana, C., Fidelibus, M.D. Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy. Hydrogeol J 23, 1381–1398 (2015). https://doi.org/10.1007/s10040-015-1290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1290-x

Keywords

Navigation