Skip to main content

Advertisement

Log in

Functional parameterization for hydraulic conductivity inversion with uncertainty quantification

Paramétrage fonctionnelle pour l’inversion de la conductivité hydraulique avec une quantification de l’incertitude

Parametrización funcional para la inversión de la conductividad hidráulica con cuantificación de la incertidumbre

用不确定量化对水力传导率反转进行功能参数设定

Parametrização funcional para inversão de condutividade hidráulica com quantificação da incerteza

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Functional inversion based on local approximate solutions (LAS) is developed for steady-state flow in heterogeneous aquifers. The method employs a set of LAS of flow to impose spatial continuity of hydraulic head and Darcy fluxes in the solution domain, which are conditioned to limited measurements. Hydraulic conductivity is first parameterized as piecewise continuous, which requires the addition of a smoothness constraint to reduce inversion artifacts. Alternatively, it is formulated as piecewise constant, for which the smoothness constraint is not required, but the data requirement is much higher. Success of the inversion with both parameterizations is demonstrated for both one-dimensional synthetic examples and an oil-field permeability profile. When measurement errors are increased, estimation becomes less accurate but the solution is stable, i.e., estimation errors remain bounded. Compared to piecewise constant parameterization, piecewise continuous parameterization leads to more stable and accurate inversion. Moreover, conductivity variation can also be captured at two spatial scales reflecting sub-facies smooth-varying heterogeneity as well as abrupt changes at facies boundaries. By combining inversion with geostatistical simulation, uncertainty in the estimated conductivity and the hydraulic head field can be quantified. For a given measurement dataset, inversion accuracy and estimation uncertainty with the piecewise continuous parameterization is not sensitive to increasing conductivity contrast.

Résumé

L’inversion fonctionnelle basée sur des solutions d’approximation locale (SAL) est développée pour des conditions permanentes d’écoulement dans des aquifères hétérogènes. La méthode emploie un ensemble de SAL de flux à imposer à la continuité spatiale d’une charge hydraulique et des flux de Darcy dans le domaine de validité des solutions, qui sont conditionnées pour des mesures restreintes. La conductivité hydraulique est d’abord paramétrée en tant que fonction continue, nécessitant l’ajout de contrainte de lissage pour réduire les artefacts d’inversion. Une variante peut être l’utilisation de la fonction continue constante, pour laquelle la contrainte de lissage n’est pas nécessaire, mais l’exigence de données est beaucoup plus élevée. Le succès de l’inversion avec ces paramétrages est démontré en estimant les flux unidimensionnels aussi bien pour des exemples de synthèse que pour un profil de perméabilité d’un champ pétrolier. Lorsque les erreurs de mesure augmentent, l’estimation devient moins précise, mais la solution est stable, c’est-à-dire que les erreurs d’estimation restent toujours circonscrites. Par rapport au paramétrage à l’aide d’une fonction constante, le paramétrage par fonction continue conduit à une inversion plus stable et plus précise. En outre, la variation de la conductivité peut également être capturée à deux échelles spatiales reflétant la variation lisse de l’hétérogénéité des sous-faciès ainsi que des changements brusques aux limites des faciès. En combinant l’inversion avec des simulations géostatistiques, l’incertitude de la conductivité estimée et du champ de charge hydraulique peut être quantifiée. Pour un ensemble de mesures données, la précision de l’inversion et l’estimation de l’incertitude avec un paramétrage de type fonction continue ne sont pas sensibles à l’augmentation du contraste de conductivité.

Resumen

La inversión funcional basada en soluciones locales aproximadas (LAS) está desarrollada para el flujo en estado estacionario en acuíferos heterogéneos. El método emplea un conjunto de LAS de flujo para imponer una continuidad espacial en la carga hidráulica y flujos de Darcy en el dominio de soluciones, que están condicionadas para mediciones restringidas. La conductividad hidráulica se parametriza primero como continua por partes, lo cual requiere la adición de una restricción de suavidad para reducir los defectos de la inversión. Alternativamente, se formula constante por partes para que la restricción de suavidad no sea requerida, pero el requisito de datos es mucho mayor. Se demuestra el éxito de la inversión con ambos parámetros para la estimación de flujos unidimensionales para ejemplos sintéticos y un perfil de permeabilidad en un campo petrolífero. Cuando se incrementan los errores de medición, la estimación se convierte menos precisa pero la solución es estable, es decir los errores de estimación permanecen limitados. En comparación con la parametrización constante por partes, la parametrización continua por partes conduce a una inversión más estables y precisa. Además, la variación de la conductividad también puede ser capturada en dos escalas espaciales reflejando sub-facies de una heterogeneidad de variación suave así como cambios abruptos en los límites de las facies. Al combinar la inversión con la simulación geoestadística puede cuantificarse la incertidumbre en la conductividad estimada y en el campo de carga hidráulica. Para un conjunto dado de medidas, la precisión de la inversión y la estimación de la incertidumbre con una parametrización continua por partes no son sensibles al incremento del contraste de conductividad.

摘要

研究了基于局部近似解法(LAS)的非均质含水层稳定态水流中的功能性反转。方法采用了一套水流局部近似解法(LAS)在解决方法中强行设定受限于有限的测量数据的水头和达西通量具有空间连续性。水力传导率第一次被参数化为分段连续的,水力传达率需要增加平滑限制条件来减少反转伪迹。作为一种选择,水力传导率用分段常数表达,因为其不需要平滑限制条件,但数据要求更高了。通过估算两个综合实例和一个油田渗透率剖面的一维水流展示了参数设定后反转的成功实例。当测量误差增加时,估算结果就欠精确,但解决方法稳定,也就是说,估算误差是有约束性的。与分段常数参数设定相比,分段连续参数设定导致更稳定和更精确的反转。此外,传导率变化也可在两个空间尺度上捕获,反映了亚相平滑-变化的异质及相边界的突变。通过把反转与地质统计模拟结合,可对估算的传导率和水头场中的不确定性进行定量化。对于特定的测量数集,分段连续参数设定的反转精确性和估算不确定性对增强的传导率对比不敏感。

Resumo

A inversão funcional baseada em soluções aproximadas locais (SAL) é desenvolvida para fluxo estacionário em aquíferos heterogéneos. O método emprega um conjunto de SAL para o fluxo, para impor a continuidade espacial da carga hidráulica e dos fluxos de Darcy no domínio da solução, que são condicionadas por medições limitadas. A condutividade hidráulica é primeiro parametrizada como troços contínuos, o que requer a introdução de um constrangimento de suavização para reduzir os artefactos da inversão. Em alternativa, é formulada como troços constantes, não sendo assim necessário o constrangimento de suavização, mas com uma maior exigência de dados. O sucesso da inversão com ambas as parametrizações é demonstrado pela estimativa de fluxos unidimensionais para ambos os exemplos sintéticos e para um perfil de permeabilidade num campo petrolífero. Quando os erros de medição são aumentados, a estimativa torna-se menos precisa, mas a solução é estável, isto é, os erros da estimativa permanecem delimitados. Comparando com a parametrização contante por troços, a parametrização continua por troços leva a uma inversão mais estável e precisa. Além disso, a variação da condutividade também pode ser captada em duas escalas espaciais, refletindo subfácies com variação de heterogeneidade suavizada, bem como mudanças abruptas nas fronteiras das fácies. Através da combinação da inversão com simulação geoestatística, podem ser quantificados a incerteza na condutividade estimada e o campo de carga hidráulica. Para um determinado conjunto de medições, a precisão da inversão e a incerteza das estimativas com a parametrização contínua por troços não é sensível ao aumento do contraste da condutividade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson MP (1997) Characterization of geological heterogeneity. In: Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge, UK, pp 23–43

  • Amudo C, Graf T, Harris NR, Dandekar R, Amor FB, May R S (2008) Experimental design and response surface models as a basis for stochastic history matching: a Niger Delta experience. SPE paper no. 12665, SPE, Richardson, TX

  • Capilla JE, Rodrigo J, Gomez-Hernandez JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31(7):907–927

    Article  Google Scholar 

  • Carrera JY, Neuman SP (1986a) Estimation of aquifer parameters under steady-state and transient conditions: I. background and statistical framework. Water Resour Res 22(2):199–210

    Article  Google Scholar 

  • Carrera JY, Neuman SP (1986b) Estimation of aquifer parameters under steady-state and transient conditions: II. uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227

    Article  Google Scholar 

  • Carrera JY, Neuman SP (1986c) Estimation of aquifer parameters under steady-state and transient conditions: III. applications. Water Resour Res 22(2):228–242

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1994) Integrating well test-derived effective absolute permeabilities in geostatistical reservoir modeling. In: Yarus JM, Chambers RL (eds) Stochastic modeling and geostatistics, vol 3. AAPG, Tulsa, OK, pp 131–142

    Google Scholar 

  • Doherty J (2005) PEST: Software for model-independent parameter estimation, Watermark Numerical Computing, Brisbane, Australia. http://www.pesthomepage.org/Home.php. Accessed October 2013.

  • Eide A L, Holden L, Reiso E, Aanonsen SI (1994) Automatic history-matching by use of response surfaces and experimental design. Proceedings, 4th European Conference on the Mathematics of Oil Recovery, Roros, Norway, June 1994

  • Eppstein MJ, Dougherty DE (1996) Simultaneous estimation of transmissivity values and zonation. Water Resour Res 32(11):3321–3336

    Article  Google Scholar 

  • Ferraresi M, Todini E, Vignoli R (1996) A solution to the inverse problem in groundwater hydrology based on Kalman filtering. J Hydrol 175:567–581

    Article  Google Scholar 

  • Fogg GE (1990) Architecture and interconnectedness of geologic media: role of the low-permeability facies in flow and transport. Heise, Hannover, Germany, pp 19–40

    Google Scholar 

  • Gallo YL, Ravalec-Dupin ML (2000) History matching geostatistical reservoir models with gradual deformation method. Proceedings, 1st International Energy Agency Workshop and Symposium, Edinburgh, UK, September 20–22, 2000

  • Gelhar LW (1992) Stochastic subsurface hydrology, Prentice Hall, Upper Saddle River, NJ, 480 pp

  • Ginn TR, Cushman JH (1990) Inverse methods for subsurface flow: a critical review of stochastic techniques. Stoch Hydrol Hydraul 4(1):1–26

    Article  Google Scholar 

  • Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three dimensional, groundwater flow model using nonlinear regression. US Geol Surv Open File Rep 91-484

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, New York, 480 pp

  • Irsa J, Zhang Y (2012) A new direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resour Res 48, W09526. doi:10.1029/2011WR011,756

  • Janssen GMCM, Valstar JR, Sjoerd EA, van der Zee TM (2006) Inverse modeling of multimodal conductivity distributions. Water Resour Res 42, W03410. doi:10.1029/2005WR004356

    Google Scholar 

  • Jiao JY, Zhang Y (2014a) Two-dimensional inversion of confined and unconfined aquifers under unknown boundary condition. Adv Water Resour 65:43–57

    Article  Google Scholar 

  • Jiao JY, Zhang Y (2014b) Tensor hydraulic conductivity estimation for heterogeneous aquifers under unknown boundary conditions. Groundwater. doi:10.1111/gwat.12202

  • Jiao JY, Zhang Y (2014c) A method based on Local Approximate Solutions (LAS) for inverting transient flow in heterogeneous aquifers. J Hydrol. doi10.1016/j.hydrol.2014.04.004

  • Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    Article  Google Scholar 

  • Kromah MJ, Liou J, MacDonald DG (2005) Step change in reservoir simulation breathes life into mature oil field. SPE paper no. 94940, SPE, Richardson, TX

  • Labaky W, Devlin JF, Gillham RW (2009) Field comparison of the point velocity probe with other groundwater velocity measurement method. Water Resour Res 45, W00D30. doi:10.1029/2008WR007066

    Article  Google Scholar 

  • LaVenue AM, Pickens JF (1992) Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater model. Water Resour Res 28(6):1543–1570

    Article  Google Scholar 

  • McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

    Article  Google Scholar 

  • McKenna SA, Poeter EP (1995) Field example of data fusion in site characterization. Water Resour Res 31(12):3229–3240

    Article  Google Scholar 

  • Medina A, Carrera J (2003) Geostatistical inversion of coupled problems: dealing with computational burden and different type of data. J Hydrol 281(4):251–264

    Article  Google Scholar 

  • Poeter EP, Hill MC, Banta ER, Mehl S, Christensen S (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. USGS Techniques and Methods, 6-A11, USGS, Reston, VA, 283 pp

  • Porter DW, Gibbs BP, Jones WF, Huyakorn PS, Hamm LL, Flach GP (2000) Data fusion modeling for groundwater systems. J Contam Hydrol 42:303–335

    Article  Google Scholar 

  • Post VEA, von Asmuth JR (2013) Review: hydraulic head measurements: new technologies, classic pitfalls. Hydrogeol J 21:737–750

    Article  Google Scholar 

  • Ramanathan R, Guin A, Ritzi RW et al (2010) Simulating the heterogeneity in braided channel belt deposits: 1. a geometric‐based methodology and code. Water Resour Res 46(4), W04515. doi:10.1029/2009WR008111

  • Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995) Predicting permeability from porosity using artificial neural networks. AAPG Bull 79(12):1786–1796

    Google Scholar 

  • Roggero F, Hu LY (1998) Gradual deformation of continuous geostatistical models for history matching. SPE paper no. 49005, SPE, Richardson, TX

  • Romero CE, Carter JN, Zimmermann RW, Gringarten AC (2000) Improved reservoir characterization through evolutionary computation. SPE paper no. 62942, SPE, Richardson, TX

  • Sagar B, Yakowitz S, Duckstein L (1975) A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers. Water Resour Res 11(4):563–570. doi:10.1029/WR011i004p00563

    Article  Google Scholar 

  • Sakaki T, Frippiat CC, Komatsu M, Illangasekare TH (2009) On the value of lithofacies data for improving groundwater flow model accuracy in a three-dimensional laboratory-scale synthetic aquifer. Water Resour Res 45, W11404. doi:10.1029/2008WR007229

    Google Scholar 

  • Scheibe DT, Freyberg DL (1995) Use of sedimentological information for geometric simulation of natural porous media structure. Water Resour Res 31:3259–3270

    Article  Google Scholar 

  • Schulze-Riegert R, Axmann J, Haase O, Rian D, You Y (2002) Evolutionary algorithms applied to history matching of complex reservoirs. SPE Reserv Eval Eng 5(2):163–173

    Article  Google Scholar 

  • Tartakovsky DM (2013) Assessment and management of risk in subsurface hydrology: a review and perspective. Adv Water Resour 51:247–260

    Article  Google Scholar 

  • Vrugt JA, Stauffer PH, Wohling T, Robinson BA, Vesselinov VV (2008) Inverse modeling of subsurface flow and transport properties: a review with new developments. Vadose Zone J 7:843–864

    Article  Google Scholar 

  • Wen XH, Deutsch CV, Cullick AS, Reza ZA (2000) Integration of production data in generating reservoir models. Stanf Cent For Comput Geostat (CCG) Monogr Ser 1:205

    Google Scholar 

  • Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108

    Article  Google Scholar 

  • Yeh TCJ, Jin M, Hanna S (1996) An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields. Water Resour Res 32(1):85–92

    Article  Google Scholar 

  • Zanini A, Kitanidis PK (2009) Geostatistical inversing for large-contrast transmissivity fields. Stoch Env Res Risk A 23:565–577

    Article  Google Scholar 

  • Zhang Y, Person M, Paola C, Gable CW, Wen X-H, Davis JM (2005) Geostatistical analysis of an experimental stratigraphy. Water Resour Res 41, W11416. doi:10.1029/2004WR003756

    Google Scholar 

  • Zhang Y (2014) Nonlinear inversion of an unconfined aquifer: simultaneous estimation of heterogeneous hydraulic conductivities, recharge rates, and boundary conditions. Transp Porous Media 102:275–299. doi:10.1007/s11242-014-0275-x

    Article  Google Scholar 

  • Zhang Y, Irsa J, Jiao JY (2014) Three-dimensional aquifer inversion under unknown boundary conditions. J Hydrol 509:416–429. doi:10.1016/j.jhydrol.2013.11.024

    Article  Google Scholar 

  • Zhou H, Gomez-Hernandez JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37

    Article  Google Scholar 

  • Zhu J, Yeh TCJ (2006) Analysis of hydraulic tomography using temporal moments of drawdown recovery data. Water Resour Res 42, W02403. doi:10.1029/2005WR004309

    Article  Google Scholar 

  • Zimmerman DA et al (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the University of Wyoming School of Energy Resources Center for Fundamentals of Subsurface Flow (WYDEQ49811ZHNG), and NSF CI-WATER (Cyberinfrastructure to Advance High Performance Water Resource Modeling), and NSF EPSCoR (EPS 1208909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Zhang, Y. Functional parameterization for hydraulic conductivity inversion with uncertainty quantification. Hydrogeol J 23, 597–610 (2015). https://doi.org/10.1007/s10040-014-1202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1202-5

Keywords

Navigation