Skip to main content

Advertisement

Log in

Numerical modeling of salinity distribution and submarine groundwater discharge to a coastal lagoon in Denmark based on airborne electromagnetic data

Modélisation numérique de la distribution de la salinité et de l’alimentation en eau souterraine dans une lagune côtière au Danemark basée sur des données électromagnétiques aériennes

Modelado numérico de la distribución de la salinidad y la descarga submarina de agua subterránea en una laguna costera en Dinamarca basado en datos electromagnéticos aéreos

基于航空电磁数据数值模拟丹麦沿海泻湖的盐度分布和海底地下水排泄至盐湖的情况

Modelação numérica da distribuição da salinidade e da descarga submarina de águas subterrâneas para uma lagoa costeira na Dinamarca com base em dados eletromagnéticos aéreos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The beneficial use of large-scale geophysical surveys in combination with numerical modeling for assessing water resources problems in coastal areas is demonstrated. A 5,000-year long historical evolution of the regional distribution of salinity beneath a coastal lagoon in Denmark is simulated in a stage-wise approach using a two-dimensional variable-density flow and transport model and compared with an interpreted resistivity distribution from transient electromagnetic data. A sequence of multi-layer unconfined/confined aquifers with non-continuous aquitards is needed to match observations in terms of complexity in resistivity/salinity distribution, deep-seated low resistivity zones (trapped residual saltwater), and presence of groundwater discharge tubes with high resistivities indicating both near and off-shore discharge of fresh groundwater. Refreshening of the lagoon system is ongoing and simulations show that this process has been most rapid during the last ∼300 years, but will continue at a slower rate for the next many hundreds of years. The development of the lagoon over the last 5,000 years, the associated changes in salinity and the present-day control of lagoon salinity are responsible for these processes. Finally, simulation results show that the groundwater influx to the lagoon is significant. The estimated fluxes correspond to 168 % of net precipitation on the lagoon or 17 % of the discharge from the largest river into the lagoon.

Résumé

L’utilisation bénéfique de levés géophysiques à grande échelle combinés à une modélisation numérique pour évaluer les problèmes de ressources en eau dans les zones côtières est démontrée. L’évolution historique sur 5,000 ans de la répartition régionale de la salinité sous une lagune côtière au Danemark est simulée selon une approche par étapes raisonnées utilisant un modèle bidimensionnel de flux à densité variable et de transport et comparée à la distribution de la résistivité électrique interprétée à partir des données électromagnétiques transitoires. Une séquence d’aquifères multi-couche libres et captifs avec des aquitards discontinus est nécessaire afin de pouvoir faire correspondre les observations aux résultats du modèle en termes de complexité de la distribution de la résistivité/salinité, de l’existence de zones profondes à faible résistivité (eau salée résiduelle piégée) et de la présence de zones de décharges d’eau souterraine caractérisées par des hautes résistivités indiquant à la fois des décharges d’eau douce souterraine à proximité du littoral et dans le domaine off-shore. Le renouvellement en eau douce du système lagunaire est en cours; les simulations montrent que le processus a été plus rapide lors des 300 dernières années, mais va se poursuivre à un rythme plus lent lors des prochaines centaines d’années. Le développement de la lagune au cours des 5,000 dernières années, les changements associés en salinité et le contrôle actuel de la salinité de la lagune sont responsables de ces processus. Finalement, les résultats de la simulation montrent que les apports d’eau souterraine dans la lagune sont significatifs. Les flux estimés correspondent à 168 % des précipitations efficaces sur la lagune ou à 17 % du débit de la plus grande rivière dans la lagune.

Resumen

Se demuestra el uso beneficioso de relevamientos geofísicos a gran escala en combinación con modelado numérico para evaluar problemas de los recursos hídricos en áreas costeras. Se simula una larga evolución histórica de 5,000 años de la distribución regional de la salinidad por debajo de una laguna costera en Dinamarca en prudentes etapas utilizando un modelo bidimensional de flujo y transporte de densidad variable y se lo compara con una distribución de resistividad interpretada a partir de datos electromagnéticos transitorios. Se necesita una secuencia de acuíferos multicapas no confinados / confinados con acuitardos discontinuos para comparar las observaciones en términos de complejidad en la distribución de resistividad / salinidad, zonas profundas de baja resistividad (agua atrapada salina residual), y presencia de conductos de descarga de agua subterránea con altas resistividades lo que indica tanto descarga de agua subterránea dulce cercana como costa afuera. La renovación del sistema lagunar por agua dulce está en curso y las simulaciones muestran que este proceso ha sido más rápido durante los últimos ∼300 años, pero continuará a un ritmo más lento en los próximos cientos de año. El desarrollo de la laguna a través de los últimos 5,000 años, los cambios asociados en la salinidad y el control actual de la salinidad de la laguna son responsables de estos procesos. Finalmente, los resultados de la simulación muestran que el agua subterránea entrante hacia la laguna es significativo. Los flujos estimados corresponden a 168 % de la precipitación neta sobre la laguna o 17 % de la descarga desde el río mayor hacia la laguna.

摘要

本文展示了利用大比例尺地球物理勘探结果并结合数值模拟评价沿海地区水资源问题.利用二维可变密度水流和传输模型以分级方法模拟了丹麦一个沿海泻湖之下盐度区域分布的5,000年长的历史演化过程,并与根据瞬时电磁数据解译的电阻率分布进行了对比.依据电阻率/盐度分布的复杂性、深位低电阻率带(被困残留盐水)及存在着电阻率高的地下水排泄管道(表明附近及离岸有地下淡水的排泄),需要多层非承压/承压含水层和不连续的隔水层以便进行观测。泻湖系统正在恢复之中,模拟显示这个进程在过去的300年间最快,但在未来的几百年中将以较慢的速度延续。这些进程是由过去5,000年泻湖的发展、盐度的相关变化及泻湖盐度的现今控制所造成的。最后, 模拟显示地下水到泻湖的通量非常重要。估计的通量相当于泻湖净降水量的168%或相当于最大河流进入到泻湖排泄量的17%。

Resumo

É demonstrada a vantagem de utilizar uma combinação de levantamentos geofísicos em larga escala com a modelação numérica para avaliar problemas de recursos hídricos em zonas costeiras. A evolução histórica da distribuição regional da salinidade de uma lagoa costeira na Dinamarca ao longo de 5000 anos é simulada, numa abordagem faseada, usando um modelo bidimensional de escoamento e de transporte de densidade variável e comparando os resultados com a distribuição de resistividade interpretada a partir de dados eletromagnéticos transitórios. Observa-se ser necessária a presença de uma sequência multicamada de aquíferos livres/confinados com aquitardos não contínuos para que as observações, em termos de complexidade na distribuição da resistividade/salinidade, condigam, quer em termos de zonas profundas de baixa resistividade (água salgada residual encurralada), quer em termos da presença de canais de descarga de águas subterrâneas com alta resistividade, indicando que há descarga de água doce subterrânea próxima e afastada da costa. Observa-se presentemente o aumento de água doce no sistema lagunar e as simulações efetuadas demonstram que este processo terá sido mais rápido nos últimos ∼300 anos, embora vá continuar a um ritmo mais lento nas próximas centenas de anos. O desenvolvimento da lagoa ao longo dos últimos 5000 anos, as mudanças associadas na sua salinidade, e o controlo atual da salinidade da lagoa, são responsáveis por esses processos. Finalmente, os resultados das simulações mostram que a descarga de águas subterrâneas para a lagoa é significativa. Os valores estimados correspondem a 168 % do volume de precipitação na lagoa ou 17 % da descarga do maior rio que desagua na lagoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen MS, Baron L, Gudbjerg J, Gregersen J, Chapellier D, Jakobsen R, Postma D (2007) Discharge of nitrate-containing groundwater into a coastal marine environment. J Hydrol 336:98–114. doi:10.1016/j.jhydrol.2006.12.023

    Article  Google Scholar 

  • Anthony D, Moller I (2002) The geological architecture and development of the Holmsland Barrier and Ringkobing Fjord area, Danish North Sea Coast. Geografisk Tidsskrift 102:27–36. doi:10.1080/00167223.2002.10649463

  • Auken E, Christiansen AV, Jacobsen LH, Sørensen KI (2008) A resolution study of buried valleys using laterally constrained inversion of TEM data. J Appl Geophys 65:10–20

    Article  Google Scholar 

  • Burnett WC, Taniguchi M, Oberdorfer J (2001) Measurement and significance of the direct discharge of groundwater into the coastal zone. J Sea Res 46:109–116. doi:10.1016/S1385-1101(01)00075-2

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramassur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006a) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543. doi:10.1016/j.scitotenv.2006.05.009

    Article  Google Scholar 

  • Burnett WC, Dulaiova H, Stringer C, Peterson R (2006b) Submarine groundwater discharge: its measurement and influence on the coastal zone. J Coastal Res S1(39):35–38

  • Carter ES, White SM, Wilson AM (2008) Variation in groundwater salinity in a tidal salt marsh basin, North Inlet Estuary, South Carolina. Estuar Coast Shelf S 76:543–552. doi:10.1016/j.ecss.2007.07.049

    Article  Google Scholar 

  • Cohen D, Person M, Wang P, Gable CW, Hutchinson D, Marksamer A, Dugan B, Kooi H, Groen K, Lizarralde D, Evans RL, Day-Lewis FD, Lane JW Jr (2010) Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA. Ground Water 48:143–158. doi:10.1111/j.1745-6584.2009.00627.x

    Article  Google Scholar 

  • Friborg R, Thomsen S (1999) Kortlægning af Ribe Formationen (Mapping of Ribe Formations). Et fællesjydsk grundvandssamarbejde [Mapping the Ribe Formation: a cooperate groundwater investigation project]. Vejle og Sønderjyllands Amt Populær rapport, Ribe, Ringkjøbing, Viborg, Arhus, Denmark

  • Johansen AC (1913) Om Forandringer i Ringkøbing Fjords Fauna [About changes in Ringkøbing Fjord Fauna]. Kommissionen for Havundersøgelser, Denmark, Bianco Lunos, Copenhagen

    Google Scholar 

  • Jørgensen F, Sandersen PB (2006) Buried and open tunnel valleys in Denmark: erosion beneath multiple ice sheets. Quat Sci Rev 25:1339–1363

    Article  Google Scholar 

  • Jørgensen F, Sandersen PB (2009) Buried valley mapping in Denmark: evaluating mapping method constraints and the importance of data density [Kartierung eiszeitlicher Rinnen in Dänemark: Bewertung methodischer Grenzen und Bedeutung der Datendichte]. Z Dtsch Ges Geowiss 160:211–223

    Google Scholar 

  • Jørgensen F, Sandersen PB, Auken E, Lykke-Andersen H, Sørensen K (2005) Contributions to the geological mapping of Mors, Denmark: a study based on a large-scale TEM survey. Bull Geol Soc Den 52:53–75

    Google Scholar 

  • Kaleris V, Lagas G, Marczinek S, Piotrowski JA (2002) Modelling submarine groundwater discharge: an example from the western Baltic Sea. J Hydrol 265:76–99

    Article  Google Scholar 

  • Kirkegaard C, Sonnenborg TO, Auken E, Jorgensen F (2011) Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics. VZJ 10:125–135. doi:10.2136/vzj2010.0038

    Google Scholar 

  • Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water 41:758–771. doi:10.1111/j.1745-6584.2003.tb02417.x

    Article  Google Scholar 

  • Manheim FT, Krantz DE, Bratton JF (2004) Studying ground water under Delmarva coastal bays using electrical resistivity. Ground Water 42:1052–1068. doi:10.1111/j.1745-6584.2004.tb02643.x

    Article  Google Scholar 

  • Nielsen MH, Rasmussen B, Gertz F (2005) A simple model for water level and stratification in Ringkobing Fjord, a shallow, artificial estuary. Estuar Coast Shelf S 63:235–248. doi:10.1016/j.ecss.2004.08.024

    Article  Google Scholar 

  • Post VEA, Van der Plicht H, Meijer HAJ (2003) The origin of brackish and saline groundwater in the coastal area of the Netherlands. Neth J Geosci 82:133–147

    Google Scholar 

  • Post VEA, Vandenbohede A, Werner AD, Maimun TMD (2013) Groundwater ages in coastal aquifers. Adv Water Resour 57:1–11. doi:10.1016/j.advwatres.2013.03.011

    Article  Google Scholar 

  • Rasmussen ES (2004) Stratigraphy and depositional evolution of the uppermost Oligocene–Miocene succession in western Denmark. Bull Geol Soc Den 51:89–109

    Google Scholar 

  • Robinson C, Gibbes B, Li L (2006) Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophys Res Lett 33. doi:10.1029/2005GL025247

  • Santos IR, Niencheski F, Burnett W, Peterson R, Chanton J, Andrade CFF, Milani IB, Schmidt A, Knoeller K (2008) Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. J Hydrol 353:275–293. doi:10.1016/j.jhydrol.2008.02.010

    Article  Google Scholar 

  • Scharling PB, Rasmussen ES, Sonnenborg TO, Engesgaard P, Hinsby K (2009) Three-dimensional regional-scale hydrostratigraphic modeling based on sequence stratigraphic methods: a case study of the Miocene succession in Denmark. Hydrogeol J 17:1913–1933

    Article  Google Scholar 

  • Sørensen KI, Auken E (2004) SkyTEM: a new high-resolution helicopter transient electromagnetic system. Explor Geophys 35:191–199

    Google Scholar 

  • Spruill TB, Bratton JF (2008) Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina. Estuar Coast 31:501–520. doi:10.1007/s12237-008-9040-0

    Article  Google Scholar 

  • Stieglitz T, Rapaglia J, Bokuniewicz H (2008) Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements. J Geophys Res-Oceans 113. doi:10.1029/2007jc004499

  • Stisen S, Sonnenborg TO, Hojberg AL, Troldborg L, Refsgaard JC (2011) Evaluation of climate input biases and water balance issues using a coupled surface-subsurface model. VZJ 10:37–53. doi:10.2136/Vzj2010.0001

    Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2004) Hydrosphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Université Laval, Quebec City, QB, University of Waterloo, Waterloo, ON, 275 pp

  • Thompson C, Smith L, Maji R (2007) Hydrogeological modeling of submarine groundwater discharge on the continental shelf of Louisiana. J Geophys Res-Oceans 112. doi:10.1029/2006jc003557

  • Vaeret L, Leijnse A, Cuamba F, Haldorsen S (2012) Holocene dynamics of the salt–fresh groundwater interface under a sand island, Inhaca, Mozambique. Quatern Int 257:74–82. doi:10.1016/j.quaint.2011.11.020

    Article  Google Scholar 

  • Vest Christiansen A, Auken E (2012) A global measure for depth of investigation. Geophysics 77:WB171–WB177

    Article  Google Scholar 

  • Viezzoli A, Tosi L, Teatini P, Silvestri S (2010) Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: the Venice Lagoon example. Geophys Res Lett 37. doi:10.1029/2009gl041572

  • Vrbancich J (2009) An investigation of seawater and sediment depth using a prototype airborne electromagnetic instrumentation system: a case study in Broken Bay, Australia. Geophys Prospect 57:633–651. doi:10.1111/j.1365-2478.2008.00762.x

    Article  Google Scholar 

  • Wilson AM (2005) Fresh and saline groundwater discharge to the ocean: a regional perspective. Water Resour Res 41. doi:10.1029/2004wr003399

Download references

Acknowledgements

This work was supported by The Research School of Water Resources (FIVA) and HOBE - Center for Hydrology–Hydrological Observatory, which is funded by the Villum Foundation. We also want to thank two anonymous reviewers for their insightful comments which greatly helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinza Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, K., Engesgaard, P., Sonnenborg, T.O. et al. Numerical modeling of salinity distribution and submarine groundwater discharge to a coastal lagoon in Denmark based on airborne electromagnetic data. Hydrogeol J 23, 217–233 (2015). https://doi.org/10.1007/s10040-014-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1195-0

Keywords

Navigation