Skip to main content
Log in

Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

Ecoulements d’eau souterraine et leur effet sur la dissolution du sel dans le bassin gypsifère du Canyon, Bassin du Paradox, Sud Est de l’Utah, Etats Unis d’Amérique

Flujo de agua subterránea y su efecto en la disolución de sales en la cuenca de Gypsum Canyon, Paradox Basin, sudeste de Utah, EEUU

美国犹他州东南部Paradox盆地Gypsum Canyon流域的地下水流及其对盐类溶解的影响

O fluxo de água subterrânea e o seu efeito sobre a dissolução de sais na sub-bacia hidrográfica de Gypsum Canyon, Bacia de Paradox, no sudeste de Utah, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

Résumé

L’écoulement d’eau souterraine a un contrôle important sur la dissolution de l’évaporite (sel) dans le sous-sol. La dissolution du sel peut conduire à l’activation de faille et à une subsidence associée des terrains et augmenter la salinité des eaux souterraines. Cette étude a pour objectif de comprendre le système d’écoulement d’eau souterraine dans le bassin versant gypsifère du Canyon dans le bassin du Paradox, Utah, Etats Unis d’Amérique, et d’identifier si oui ou on la dissolution associée aux écoulements d’eau souterraine impacte la déformation des terrains. Le travail caractérise les écoulements souterrains et le transport de solutés du bassin versant en utilisant un modèle 3D à éléments finis hydrodynamique et de transport, SUTRA. Les sources ont été échantillonnées pour analyser les isotopes stables de l’eau et les solides totaux dissous. L’eau de source et les données de conductivité hydraulique ont fournis les contraintes pour les paramètres du modèle. Les résultats du modèle indiquent que l’écoulement régional des eaux souterraines se dirige en direction du Nord Ouest vers la rivière du Colorado, et les écoulements de faible profondeur sont influencés par la topographie. La faible perméabilité obtenue à partir de tests de laboratoire est incompatible avec les débits observés sur le terrain, soutenant l’idée que la perméabilité de fracture joue un rôle important dans le contrôle des écoulements d’eau souterraine. Les résultats du modèle implique que la dissolution associée aux eaux souterraines est faible en moyenne, et ne peut pas tenir compte des changements de volume dans les dépôts d’évaporite qui pourraient entraîner une déformation des terrains en surface, mais il est supposé que la dissolution peut être très localisée et/ou affaiblir les dépôts d’évaporite, et pourrait conduire à une déformation des terrains en surface au cours du temps.

Resumen

El flujo de agua subterránea es un control importante en la disolución subsuperficial de evaporitas (sales). La disolución de sales puede forzar el fallamiento y la subsidencia asociada en la superficie del terreno e incrementar la salinidad en el agua subterránea. Este estudio apunta aentender el sistema de flujo de agua subterránea de la cuenca de Gypsum Canyon en la Paradox Basin, Utah, EEUU, y si la disolución o no, forzada por el agua subterránea afecta la deformación de la superficie. El trabajo caracteriza el flujo de agua subterránea y los sistema de transporte de soluto de la cuenca usando un modelo 3D de flujo y transporte de elementos finitosD, SUTRA. Se analizaron las muestras de manantiales para isótopos estables en agua y los sólidos disueltos totales. Los datos del agua del manantial y de la conductividad hidráulica proveyeron restricciones para los parámetros del modelo. Los resultados del modelo indican que el flujo regional del agua subterránea tiene sentido del noroeste hacia el Río Colorado, y los sistemas de flujo somero están influenciados por la topografía. La baja permeabilidad obtenida a partir de ensayos de laboratorio es inconsistente con las descargas observadas en el campo, apoyando la noción que la permeabilidad de la fractura juega un rol significativo en el control del flujo de agua subterránea. La salida del modelo implica que la disolución forzada por el agua subterránea es pequeña en promedio, y no puede explicar los cambios de volúmenes en los depósitos de evaporitas que podrían causar deformación superficial, pero se especula que la disolución puede ser altamente localizada y/o debilita los depósitos de evaporitas, y podría conducir a la deformación superficial con el transcurso del tiempo.

摘要

地下水流是地表以下蒸发岩(盐类)溶解的重要控制因素.盐类溶解可源自断层作用和相关的地表沉降,盐类溶解增加地下水中的盐度.本研究目的就是了解美国犹他州东南部Paradox盆地Gypsum Canyon流域的地下水流系统以及地下水导致的溶解是否影响地表变形。研究工作采用三维有限元流和运移模型SUTRA描述了流域内的地下水流系统和溶质运移系统。对泉水水样中的同位素和总溶解固体进行了分析。泉水和水力传导率资料限制了模型的参数。模型结果表明区域地下水流向西北至科罗拉多河,浅部水流系统受地形的影响。实验室得到的低透水率与室外观测的排泄量不一致,这个结果显示断裂透水率在控制地下水流中发挥重要的作用。模型结果表明地下水导致的溶解平均很小,不能造成蒸发岩沉积层足以引起地表变形的容积变化,但根据推断,溶解可能高度局部化,或者能减少蒸发岩沉积层,最终导致地形变化。

Resumo

O fluxo de água subterrânea exerce um controlo importante na dissolução de evaporitos (sais) presentes na subsuperfície. A dissolução de sais pode dar origem a falhas e subsidência associada da superfície do solo, e pode aumentar a salinidade das águas subterrâneas. O presente estudo tem como objetivo compreender o sistema de fluxo de água subterrânea na sub-bacia hidrográfica de Gypsum Canyon, na Bacia de Paradox, no sudeste de Utah, EUA, e entender se a dissolução causada pelas águas subterrâneas afeta ou não a deformação da superfície do solo. O trabalho carateriza os sistemas de fluxo de água subterrânea e o transporte de solutos na bacia, utilizando um modelo 3D de fluxo e transporte em elementos finitos, SUTRA. Em amostras de nascentes foram analisados isótopos estáveis de água e sólidos totais dissolvidos. Os dados das nascentes e de condutividade hidráulica balizaram os parâmetros do modelo. Os resultados do modelo indicam que o fluxo regional das águas subterrâneas é para noroeste em direção ao Rio Colorado, e que os sistemas de fluxo pouco profundos são influenciados pela topografia. Os baixos valores de permeabilidade obtidos a partir de ensaios no laboratório são inconsistentes com as descargas observadas no campo, corroborando a ideia de que a permeabilidade associada a fraturas desempenha um papel significativo no controlo do fluxo de água subterrânea. Os resultados do modelo de transporte sugerem que a dissolução originada pelas águas subterrâneas é reduzida, em termos médios, não podendo explicar as alterações do volume dos evaporitos que poderiam causar a deformação da superfície. Não obstante, especula-se que a dissolução possa ser altamente localizada e/ou possa enfraquecer os depósitos dos evaporitos, podendo levar à deformação da superfície ao longo do tempo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baars DL (2010) Geology of Canyonlands National Park. In Sprinkel DA, Chidsey TC Jr, Anderson PB (eds) Geology of Utah’s Parks and Monuments, 3rd edn. Bryce Canyon Nat Hist Assoc and Utah Geol Assoc, Salt Lake City, UT

  • Barbeau DL (2003) A flexural model for the Paradox Basin: implications for the tectonics of the Ancestral Rocky Mountains. Basin Res. doi:10.1046/j.1365-2117.2003.00194.x

    Google Scholar 

  • Benito G, Prez-gonzs A, Gutirrez F, Machado MJ (1998) River response to Quaternary subsidence due to evaporite solution (Gallego River, Ebro Basin, Spain). Geomorphology 22:243–263

    Article  Google Scholar 

  • Benito G, Gutierrez F, Perez-Gonzalez A, Machado MJ (2000) Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain). Geomorphology 33:209–224

    Article  Google Scholar 

  • Bishop CE (1996) Potential for potable ground water on state land near Canyonlands National Park, Utah, Section 16, T. 30 S., R. 20 E., Report of Invest. 230, Utah Geol Surv, Salt Lake City, UT, 25 pp

  • Bowen GJ (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res. doi:10.1029/2003WR002086

    Google Scholar 

  • Bowen GJ (2012) The Online Isotopes in Precipitation Calculator, version 2.2. Available via http://www.waterisotopes.org. Accessed 21 August 2012

  • Bryan K (1919) Classification of springs. J Geol. doi:10.1086/622677

    Google Scholar 

  • Condon SM (1997) Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab Limestone in the Paradox Basin, southeastern Utah and southwestern Colorado. US Geol Surv Bull 2000-P

  • Craig H (1961) Isotopic variations in meteoric waters. Science. doi:10.1126/science.133.3465.1702

    Google Scholar 

  • Cudlip L, Berghoff K, Vana-Miller D (1999) Water resources management plan Arches National Park and Canyonlands National Park, Utah. Utah State Univ., Logan, UT, 153 pp

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Evans DG, Nunn JA, Hanor JS (1991) Mechanisms driving groundwater flow near salt domes. Geophys Res Lett 18(5):927–930

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Furuya M, Mueller K, Wahr J (2007) Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric synthetic aperture radar and point target analysis: 1992–2002. J Geophys Res. doi:10.1029/2006JB004302

    Google Scholar 

  • Ge H, Jackson MPA (1998) Physical modeling of structures formed by salt withdrawal: implications for deformation caused by salt dissolution. AAPG Bull 82(2):228–250

    Google Scholar 

  • Guerrero J, Gutierrez F, Lucha P (2004) Paleosubsidence and active subsidence due to evaporite dissolution in the Zaragoza area (Huerva River valley, NE Spain): processes, spatial distribution and protection measures for transport routes. Eng Geol. doi:10.1016/j.enggeo.2003.10.002

    Google Scholar 

  • Gutiérrez F (2004) Origin of the salt valleys in the Canyonlands section of the Colorado Plateau: evaporite-dissolution collapse versus tectonic subsidence. Geomorphology. doi:10.1016/S0169-555X(03)00186-7

    Google Scholar 

  • Huntoon PW (1979) The occurrence of ground water in the Canyonlands area of Utah, with emphasis on water in the Permian section. 9th Field Conf. Guidebook, Four Corners Geol Soc, Durango, CO, pp 39–46

  • Huntoon PW (1986) The incredible tale of Texasgulf well 7 and fracture permeability, Paradox Basin, Utah. Ground Water 24(5):643–653

    Article  Google Scholar 

  • Huntoon PW, Billingsley GH, Breed WJ (1982) Geological map of Canyonlands National Park and vicinity, Utah. Canyonlands Nat Hist Assoc, Moab, UT, Map scale 1:62,500

  • Jackson MPA, Schultz-Ela DD, Hudec MR, Watson IA, Porter ML (1998) Structure and evolution of Upheaval Dome: a pinched-off salt diapir. Geol Soc Am Bull. doi:10.1130/0016-7606(1998)110<1547:SAEOUD>2.3.CO;2

    Google Scholar 

  • Johnson KS (2005) Subsidence hazards due to evaporite dissolution in the United States. Environ Geol. doi:10.1007/s00254-005-1283-5

    Google Scholar 

  • Lewis RQ, Campbell RH, Thaden RE, Krummel WJ, Willis GC, Matyjasik B (2011) Geologic map of Elk Ridge and vicinity, San Juan County, Utah. Miscellaneous publication 11-1DM. Utah Geol Surv, Salt Lake City, UT, 13 pp

  • Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr. doi:10.1046/j.1365-2699.1999.00329.x

    Google Scholar 

  • Martin L (2001) Drinking water source protection plan Canyonlands National Park. Natl Park Serv Water Resour Div, Fort Collins, CO, 22 pp

  • Massoth TW, Tripp BT (2011) Well database of salt cycles of the Paradox Basin, Utah, Open-File Report 581. Utah Geol Surv, Salt Lake City, UT, 13 pp

  • McCleary J (1989) Characterization of the Davis Canyon site, San Juan County, Utah, as a potential repository for the disposal of high level nuclear waste and spent fuel. Utah Geol Assoc, Salt Lake City, UT, pp 209–222

  • McCleary JR, Romie JE (1986) Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) Formations in the vicinity of Davis and Lavender Canyons, southeastern Utah, part 1, BMI/ONWI-5. Office of Nuclear Waste Isolation, US Department of Energy, Washington, DC

  • National Atmospheric Deposition Program (2007) NADP Program Office, Illinois State Water Survey. Available via http://nadp.sws.uiuc.edu/. Accessed 6 Feb 2013

  • Nuccio VF, Condon SM (1996) Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Formation. US Geol Surv Bull 2000-O, 41 pp

  • Nuckolls HM, McCulley BL (1987) Origin of saline springs in Cataract Canyon, Utah. 9th Field Conf. Guidebook, Four Corners Geol Soc, Durango, CO, pp 193–199

  • Paiz CD, Thackston JW (1987a) Hydrogeologic units in Cataract Canyon and vicinity: Paradox Basin, Utah. 9th Field Conf. Guidebook, Four Corners Geol Soc, Durango, CO p 161–171

  • Paiz CD, Thackston JW (1987b) Summary of hydrogeologic data and preliminary potentiometric maps in the vicinity of Davis and Lavender Canyons, Paradox Basin, Utah. 9th Field Conf. Guidebook, Four Corners Geol Soc, Durango, CO, pp 173–184

  • PRISM Climate Group, Oregon State University (2013) Available via http://prism.oregonstate.edu. Accessed 6 Feb 2013

  • Ranganathan V, Hanor JS (1988) Density-driven groundwater flow near salt domes. Chem Geol 74:173–188

    Article  Google Scholar 

  • Richter HR (1980) Ground water resources in the part of Canyonlands National Park east of the Colorado River and contiguous Bureau of Land Management lands, Utah. MSc Thesis, University of Wyoming, USA

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process. doi:10.1002/hyp.6335

    Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 36(6):904–919

    Article  Google Scholar 

  • Sumison CT, Bolke EL (1972) Water resources of part of Canyonlands National Park, southeastern Utah, US Geol Surv Open File Rep 72-363, 75 pp

  • Trudgill BD (2002) Structural controls on drainage development in the Canyonlands grabens of southeast Utah. AAPG Bull 86(6):1095–1112

    Google Scholar 

  • Utah Geological Survey (2012) Spring ID 1381 collected in 1948. In: Utah’s geothermal wells and springs. Available via http://geology.utah.gov/geothermal/interactive/index.html. Accessed 1 May 2012

  • Voss CI, Provost AM (2010) SUTRA: a model for saturated-unsaturated variable-density groundwater flow with solute or energy transport, version 2.2. US Geol Surv Water Resour Invest Rep 02-4231, 291 pp

  • Voss CI, Boldt D, Shapiro AM (2001) A graphical-user interface for the U.S. Geological Survey’s SUTRA code using Argus ONE. US Geol Surv Open-File Rep 97-421, 106 pp

  • Walsh P, Schultz-Ela DD (2003) Mechanics of graben evolution in Canyonlands National Park, Utah. Geol Soc Am Bull. doi:10.1130/0016-7606(2003)115<0259

    Google Scholar 

  • Woods AJ, Lammers DA, Bryce SA, Omemik JM, Denton RL, Domeier M, Comstock JA (1997) Ecoregions of Utah (color poster with map, descriptive text, summary tables, and photographs). US Geological Survey, Reston, VA

Download references

Acknowledgements

This study was supported in part by NSF grant EAR 1119173 and the Colorado Ground Water Association. Thank you to the Stable Isotope Lab at the Institute for Arctic and Alpine Research, University of Colorado Boulder for processing stable isotope samples, Jason Reitman for help in the field, and three reviewers for their comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine G. Reitman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reitman, N.G., Ge, S. & Mueller, K. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA. Hydrogeol J 22, 1403–1419 (2014). https://doi.org/10.1007/s10040-014-1126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1126-0

Keywords

Navigation