Skip to main content
Log in

Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

Utilisation d’eau souterraine et de surface par une technique d’infiltration en berge en Malaisie

Utilización de agua subterránea y agua superficial usando una técnica de infiltración de banco en Malasia

马来西亚之岸边渗滤技术的地下和地表水利用率

Uso de água subterrânea e superficial com base na técnica de bancos filtrantes na Malásia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5–98 % decrease in turbidity, as well as reductions in HCO3 , Cl, SO4 2−, NO3 , Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

Résumé

L’infiltration en berge (IB) est une des solutions pour l’alimentation en eau brute dans les pays tropicaux. Cette étude en Malaisie explore l’utilisation de l’IB pour compléter avec de l’eau souterraine une ressource en eau de surface polluée. Trois principaux facteurs ont été étudiés : (1) la contribution d’eau de surface infiltrée en berge au débit pompé résultant, (2) l’apport d’eau souterraine locale et (3) les caractéristiques qualitatives de l’eau d’alimentation qui en résulte. Une méthode géophysique a été employée pour définir la structure géologique et le fonctionnement hydrogéologique et des techniques isotopiques ont été mises en œuvre pour identifier la source de recharge de l’eau souterraine et les interactions entre eau souterraine et eau de surface. Les paramètres physico-chimiques et microbiologiques des différentes eaux de surface locales et de l’eau souterraine ont été analysés avant et pendant le pompage. Les eaux pompées révèlent une diminution de 5 à 98 % de la turbidité, ainsi que des réductions des concentrations en HCO3 , Cl, SO4 2−, NO3 , Ca2+, Al3+ et As par rapport à celles de l’eau de la rivière Langat. En outre, les quantités d’E. coli, de coliformes totaux et de Giardia sont significativement réduites (99.9 %).Cependant, les échantillons d’eau prélevés durant le pompage sur les puits d’essai montrent de fortes concentrations en Fe2+ et Mn2+. Les résultats des pompages d’essai indiquent que les deux puits utilisés lors de l’étude sont capables de fournir le débit attendu.

Resumen

La infiltración de banco (BI) es una de las soluciones para proporcionar agua cruda para el abastecimiento pública en países tropicales. Este estudio en Malasia explora el uso de BI para suplementar con agua subterránea una fuente de agua superficial contaminada. Se investigaron tres factores mayores: (1) la contribución de agua superficial a través de BI a la extracción resultante, (2) entrada de agua subterránea local, y (3) características de la calidad del agua de abastecimiento resultante. Se empleó un método geofísico para definir la geología de subsuelo y la hidrogeología, y se llevaron a cabo técnicas isotópicas para identificar la fuente de la recarga del agua subterránea y de la interacción entre el agua superficial y el agua subterránea. Los parámetros físico químicos y microbiológicos de los cuerpos locales de agua superficial y agua subterránea se analizaron antes y durante la extracción del agua. El agua extraída reveló una disminución del 5–98 % en la turbidez, así como reducciones en las concentraciones de HCO3 , Cl, SO4 2−, NO3 , Ca2+, Al3+ y As comparadas con aquellas del agua del Río Langat. Además se redujeron significativamente las cantidades de E. coli, coliformes totales y Giardia (99.9 %). Sin embargo, las muestras de agua de los pozos de prueba durante el bombeo mostraron altas concentraciones de Fe2+ y Mn2+. Los resultados de los ensayos de bombeo indican que los dos pozos usados en el estudio eran capaces para sostener los rendimientos.

摘要

岸边渗滤(BI)是在热带国家为公众提供水源之一的解决方案。本研究在马来西亚探讨了采用岸边渗滤技术使用地下水来补充受污染的地表水资源。三个主要的因素如:(1)通过BI所贡献地表水的抽水产生,(2)当地输入地下水,以及(3)所产生水供应的质量。本研究使用地球物理方法来确定地下地质和水文地质的位置及地下水源,和利用同位素技术进行了则查地表水和地下水之间的相互作用。接着,进行了在取水之前和之后的当地地表水体以及地下水体的理化和微生物指标分析。以冷岳河的水相比较,取水结果显示,浊度减少了5-98 %,以及HCO3 ,Cl, SO4 2−, NO3 , Ca2+, Al3+ 和As含量也减少了。此外,大肠杆菌,总大肠菌群和贾第鞭毛虫的金额显著减少( 99.9 % ) 。然而,从试验井抽水的水样本显示高浓度的Fe2 +和Mn2 + 。这抽水试验的结果表明,在该研究中使用的两个井能够维持足够的产量。

Resumo

A técnica de bancos filtrantes (BF) é uma das soluções para a produção de água para abastecimento público em países tropicais. Este estudo na Malásia investiga a utilização de BF para complementar, com água subterrânea, a exploração de uma massa de água superficial contaminada. Foram estudados três grandes fatores: (1) a contribuição da água superficial através dos BF para a extração resultante; (2) a entrada de água subterrânea local e (3) as caraterísticas de qualidade da água resultante para abastecimento. Foi aplicado um método geofísico para definir a geologia e hidrogeologia subsuperficiais e foram empregues técnicas isotópicas para identificar a origem da recarga da água subterrânea e a interação entre água superficial e água subterrânea. Os parâmetros físico-químicos e microbiológicos das massas de água superficiais locais e da água subterrânea foram analisados antes e durante a extração de água. A água extraída revelou uma diminuição da turvação de 5–98 %, assim como um decréscimo nas concentrações de HCO3 , Cl, SO4 2−, NO3 , Ca2+, Al3+ e As, comparativamente àquilo que se observa na água do Rio Langat. Adicionalmente, as quantidades de E. coli, coliformes totais e Giardia foram significativamente reduzidas (99.9 %). No entanto, amostras de água colhidas durante o bombeamento em poços de ensaio mostraram concentrações elevadas de Fe2+ e Mn2+. Os resultados dos ensaios de bombeamento indicam que os dois poços usados neste estudo foram capazes de sustentar a exploração.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah Sani HH (1985) Laporan kemajuan Pemetaan geologi kawasan Teluk Datuk-Sepang. Syit 101–2, Annual report, Geological Survey Malaysia, Selangor, Malaysia, pp 1991–1995

  • Al-Badaii FM (2011) Water quality assessment of the Semenyih River, MSc Thesis, Universiti Kebangsaan Malaysia, Selangor, Malaysia

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Water Works Association, Washington, DC

    Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam. doi:10.1002/esp.3290200510

  • Ayub MS (2005) Malaysian meteoric water line: an input to isotopes hydrological studies. TAG Brown Bag Seminar no. 1, Malaysia Institute for Nuclear Technology Research (MINT), Selangor, Malaysia

  • Carman PC (1938) The determination of the specific surface of powders. J Soc Chem Ind Trans 57:225

    Google Scholar 

  • Carman PC (1956) Flow of gases through porous media, Butterworths Scientific Publications, London

  • Chapelle FH, McMahon PB, Dubrovsky NM, Fuhii RF, Oasksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31(2):359–371

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • CSE (2007) Sewage canal. How to clean up the Yamuna. Centre for science and environment, New Delhi

  • Dash RR, Mehrotra I, Kumar P, Grischek T (2008) Lake bank filtration at Nainital, India: water quality evaluation. Hydrogeol J 16(6):1089–1099. doi:10.1007/s10040-008-0295-0

    Article  Google Scholar 

  • Department of Environment (DOE) (2005) Environmental quality report, Department of Environment Malaysian, 71 pp

  • Department of Standards Malaysia (2010) Malaysian standard: drinking water-quality requirements (MS 2320:2010). Department of Standard Malaysia, Kuala Lumpur, 19 pp

  • Department of Statistics Malaysia (2010) Population distribution and basic demographic characteristics report. Department of Statistics, Kuala Lumpur

  • Dillon PJ, Miller M, Fallowfield H, Hutson J (2002) The potential of river bank filtration for drinking water supplies in relation to microcystin removal in brackish aquifers. J Hydrol 266(3):209–221

    Article  Google Scholar 

  • Donald D, Grygaski T (2002) Development of a sustainable potable water supply for rural villages in the coastal region of Tanzania, Africa. ENVE 431 final project report, University of Waterloo, Waterloo, ON

    Google Scholar 

  • Dousson C, Poitevin G, Ledoux E, Detay M (1997) River bank filtration: modeling of the changes in water chemistry with emphasis on nitrogen species. J Contam Hydrol 25:129–156. doi:10.1016/S0169-7722(96)00024-1

    Article  Google Scholar 

  • Farizawati S, Lim YA, Ahmad RA, Fatimah CT, Siti Nor Y (2005) Contribution of cattle farms towards river contamination with Giardia cysts and Cryptosporidium oocysts in Sungai Langat Basin. Trop Biomed 22(2):89–98

    Google Scholar 

  • Gobbett DJ, Hutchison CS (1973) Geology of the Malay Peninsula: West Malaysia and Singapore. Regional Geology Series, Wiley, New York, 438 pp

    Google Scholar 

  • Grischek T, Schoenheinz D, Ray C (2002) Sitting and design issues for river bank filtration schemes. In: Ray C et al (eds) Riverbank filtration: improving source water quality. Kluwer, Dordrecht, The Netherlands, pp 291–302

    Google Scholar 

  • Grüenheid S, Amy G, Jekel M (2005) Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res 39(14):3219–3228. doi:10.1016/j.watres.2005.05.030

    Article  Google Scholar 

  • Hazen A (1911) Discussion of Dams on sand foundations by A. C.Koenig. Trans. Am Soc Civ Eng 73:199–203

    Google Scholar 

  • Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266:139–144. doi:10.1016/S0022-1694(02)00158-0

    Article  Google Scholar 

  • Irmscher R, Teermann I (2002) Riverbank filtration for drinking water supply: a proven method, perfect to face today’s challenges. Water Sci Technol Water Supply 2(5/6):1–8

    Google Scholar 

  • JICA, MGD (2002) The study on the sustainable groundwater resources and environmental management for the Langat Basin in Malaysia, vols 1–5. Executive Summary, Japan International Cooperation Agency (JICA) and Dept. of Minerals and Geosciences Malaysia, Kuala Lumpur

  • Jüttner F (1999) Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons. Water Sci Technol 40(6):123–128. doi:10.1016/S0273-1223(99)00547-8

    Article  Google Scholar 

  • Kneisel C (2006) Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology 80:32–44

    Article  Google Scholar 

  • Kozeny J (1927) “Ueber kapillare Leitung des Wassers im Boden” Wien [On capillary conduction of water in the soil, Vienna]. Akad Wiss 13(2a):271

    Google Scholar 

  • Kühn W, Müller U (2000) Riverbank filtration: an overview. J Am Water Works Assoc 92(12):60–69

    Google Scholar 

  • Lalwani S, Dogra TD, Bhardwaj DN, Sharma RK, Murty OP, Vij A (2004) Study on arsenic level in groundwater of Delhi using hydride generator accessory coupled with atomic absorption spectrophotometer. Indian J Clin Biochem 19(2):135–140. doi:10.1007/BF02894273

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least squares inversion of apparent resistivity pseudosection using a quasi-Newton method. Geophys Prospect 44(3):131–152

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34(3):182–187

    Article  Google Scholar 

  • Ray C (2001) Riverbank filtration: an analysis of parameters for optimal performance. In: AWWA Annual Conference, Washington DC

  • Ray C, Grischek T, Schubert J, Wang Z, Speth TF (2002) A perspective of riverbank filtration. J Am Water Works Assoc 94(4):149–160

    Google Scholar 

  • Schijven FJ, Majid Hassanizadeh S (2000) Removal of viruses by soil passage: overview of modeling, processes and parameters. Crit Rev Environ Sci Technol 30(1):49–127

    Article  Google Scholar 

  • Schijven JF, Berger P, Miettinen I (2002) Removal of pathogens, surrogates, indicators, and toxins using riverbank filtration. In: Ray C et al (eds) Riverbank filtration: improving source water quality. Kluwer, Dordrecht, The Netherlands, pp 73–116

    Google Scholar 

  • Schubert J (2002) Hydraulic aspect of river bank filtration-field studies. J Hydrol 266:145–161

    Article  Google Scholar 

  • Shamrukh M, Ahmed AW (2008) Riverbank filtration for sustainable water supply: application to a large-scale facility on the Nile River. Clean Technol Environ Policy 10:351–358. doi:10.1007/s10098-007-0143-2

    Article  Google Scholar 

  • Sontheimer H (1980) Experiences with riverbank filtration along the Rhine River. J Am Water Works Assoc 72:386–390

    Google Scholar 

  • Sprinkle CR (1989) Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama: U.S. Geological Survey Professional paper 1403-I, p 105

  • Stuyfzand PJ, Luers F, Reijnen GK (1994) Geohydrochemical aspects of methane in groundwater in the Netherlands, H2O 27 (in dutch), pp 500–510

  • USEPA (2005) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 821-R-OI-025, USEPA, Office of Water, Washington, DC

  • Weiss WJ, Bouwer EJ, Ball WP, O’Melia CR, Aurora H, Speth TF (2002) Reduction in disinfection byproduct precursors and pathogens during riverbank filtration at three Midwestern United States drinking-water utilities. In: Ray C, Melin G, Linsky RB (eds) Riverbank filtration: improving source water quality. Kluwer, Dordrecht, The Netherlands, pp 147–174

    Google Scholar 

  • Weiss WJ, Bouwer EJ Ball, WP, O´Melia CR, Le Chevallier MW, Arora, H, Aboytes R, Speth TF (2003) Study of water quality improvements during riverbank filtration at three Midwestern United States drinking water utilities. Geophys Res Abstracts 5:04297

    Google Scholar 

  • WHO (2008) Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda, vol 1, recommendations, 3rd edn. WHO, Geneva, 515 pp

    Google Scholar 

  • WHO, UNESCO/UNEP (2001) Water quality assessment: a guide to the use of biota, sediment and water in environmental monitoring, 2nd edn. UNESCO/WHO/UNEP, Paris

Download references

Acknowledgements

The authors are grateful to the staff of the National Hydraulic Research Institute of Malaysia (NAHRIM) for their kind assistance during field investigations. Financial support to the author was provided by the Malaysian Government. The authors are also very much obliged to the three reviewers and the editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Khairul Nizar Shamsuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamsuddin, M.K.N., Sulaiman, W.N.A., Suratman, S. et al. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia. Hydrogeol J 22, 543–564 (2014). https://doi.org/10.1007/s10040-014-1122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1122-4

Keywords

Navigation