Skip to main content
Log in

Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA

Scenarios de dépollution d’une contamination par du sélénium, bassin versant de Blackfoot, Idaho du Sud-Est, Etats-Unis

Escenarios de remediación para contaminación por selenio, Cuenca de Blackfoot, sudeste de Idaho, EEUU

美国爱达荷州东南部Blackfoot流域硒污染的修复方案

Cenários de remediação para contaminação por selénio, bacia hidrográfica de Blackfoot, sudeste de Idaho, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Extensive phosphate mining in the Blackfoot watershed of Idaho (USA) has substantially increased the selenium (Se) concentration in the river during both snowmelt and baseflow when groundwater discharge dominates. Phosphate mines create a linkage between Se-laden shale that occurs in the Phosphoria Formation and the underlying regional Wells Formation aquifer. Using a reconnaissance-level transport model, mines in the watershed were prioritized for remediation and for comparing the results of simulations of remediation scenarios with a baseline of no remediation, for which Se concentration in the river will exceed the aquatic standard along an extensive length. An accurate simulation of recharge distribution around the watershed and simulated flux to the river is essential. Remediation of mines north of the river will substantially decrease the size of the Se plume, although significant Se will continue to discharge to the river. Similarly, remediation of three mines south of the river would decrease the Se discharge to the river but allow substantial amounts to remain stored in the groundwater north and far south of the river. A lack of calibration data is not a reason to forgo remediation, but rather ongoing data collection can be used to fine-tune plans as they are implemented.

Résumé

L’exploitation minière extensive de phosphate sur le bassin versant de Blackfoot dans l’Idaho (Etats-Unis) a considérablement augmenté la concentration en sélénium (Se) dans la rivière, à la fois durant la fonte des neiges et en débit de base lorsque la décharge de nappe domine. Les mines de phosphate créent une relation entre les schistes séléniteux qui se trouvent dans la Phosphoria Formation, et l’aquifère régional sous-jacent de la Well Formation. Utilisant un modèle de déplacement de l’eau souterraine avec reconnaissance de niveau, on a donné la priorité aux mines du bassin pour la décontamination et pour la comparaison des résultats de scénarios de décontamination avec un référentiel sans dépollution, cas dans lequel la concentration en sélénium dans la rivière excède la norme sur une longue distance. Une simulation exacte de la distribution de la recharge sur le bassin versant et du flux simulé vers la rivière est essentielle. La décontamination des mines au Nord de la rivière va considérablement réduire la taille du panache de sélénium, bien que le Se en quantités significatives va continuer à se décharger dans la rivière. De la même façon, la décontamination de trois mines au Sud de la rivière diminuerait la décharge de Se dans la rivière, mais permettrait à des quantités considérables de Se de rester emmagasinées dans l’eau souterraine au Nord et à l’extrême Sud de la rivière. Un manque de données d’étalonnage n’est pas une raison pour renoncer à décontaminer, et la collecte de données en cours pourra être utilisée pour affiner les projets lors de leur mise en œuvre.

Resumen

La minería extensiva de fosfatos en la cuenca de Blackfoot en Idaho (EEUU) ha incrementado sustancialmente la concentración de selenio (Se) en el río tanto durante el deshielo y como en el flujo de base cuando domina la descarga de agua subterránea. Las minas de fosfato crean un nexo entre el carga de Se de los esquistos que ocurre en la Formación Phosphoria y el acuífero regional subyacente de la Formación Wells. Usando un modelo de transporte a nivel de reconocimiento, se priorizaron las minas en la cuenca para la remediación y para la comparación de los resultados de las simulaciones de escenarios de remediación con una línea de base de no remediación, para lo cual la concentración de Se en el río excede la norma acuática a lo largo de una extensa longitud. Resulta esencial una simulación precisa de la distribución de la recarga alrededor de la cuenca y del flujo simulado hacia el río. La remediación de las minas al norte del río decrece sustancialmente el tamaño de la pluma de Se, aunque una cantidad significativa de Se continuará descargando hacia el río. De forma similar, la remediación de tres minas del sur del río disminuirá la descarga de Se al río pero permitiría que permaneciera cantidades sustanciales almacenadas en el agua subterránea al norte y bien lejos al sur del río. Una falta de datos de calibración no es razón para abstenerse de la remediación, pero más bien la continuidad en recolección de datos puede ser usada para planes de ajustes detallados a medida que son implementados.

摘要

美国爱达荷州Blackfoot流域大量的磷酸盐矿开采已经大幅度提高了河流中硒的浓度, 无论在融雪水多还是在地下水排泄比较强烈的基流主导季节,都是如此。磷酸盐矿使磷矿群中的含硒页岩和底层的区域性的水井群含水层保持着联系。利用初勘级的输运模型,对流域的矿井进行修复排队,以及基于修复方案的模拟结果的比较进行排队,作为参考基准的是没有进行修复的河流,其在其很大长度范围内,硒的含量都是超标的。准确模拟出流域内补给位置分布及其流入河流的通量是必不可少的。对河流以北的矿井进行修复将大大减小硒晕的规模,不过仍会有大量的硒持续流向河流。同样,河流以南三个矿井的修复将会减少流向河流的硒的量,但仍会有大量的硒继续存在于河流以北和河流以南较远处的地下水中。不能因为缺少校准数据而放弃修复,而应该在修复进行期间继续收集数据,用来调整修复方案。

Resumo

A mineração extensiva de fosfatos na bacia de Blackfoot, em Idaho (EUA), incrementou substancialmente a concentração de selénio (Se) no rio em duas situações, durante a fusão da neve e quando a descarga do fluxo de base de água subterrânea é dominante. As minas de fosfato criam uma ligação entre os xistos com Se que ocorrem na Formação Phosphoria e o aquífero regional subjacente da Formação Wells. Usando um modelo de transporte a nível de reconhecimento, as minas da bacia foram priorizadas para remediação e para comparação dos resultados das simulações dos cenários de remediação com uma linha de base de não remediação, para a qual a concentração de Se no rio excederá o padrão aquático ao longo de uma extensão significativa. É essencial uma simulação acurada da distribuição da recarga na bacia e da simulação de fluxo para o rio. A remediação das minas a norte do rio fará decrescer substancialmente a dimensão da pluma, apesar de uma quantidade significativa de Se continuar a descarregar para o rio. Similarmente, a remediação de três minas a sul do rio fará decrescer a descarga de Se para o rio, mas permitirá que quantidades substanciais se mantenham armazenadas na água subterrânea a norte e no extremo sul em relação ao rio. Uma falta de calibração não é razão para renunciar à remediação, mas antes para considerar a recolha constante de dados, a fim de serem usados para afinar os planos à medida que forem sendo implementados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • American Society for Testing and Materials (ASTM) (1998) Standard guide for comparing ground-water flow model simulations to site-specific information, Designation: D 5490–93. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, 381 pp

    Google Scholar 

  • Arcadis (2009) Final groundwater modeling report, Blackfoot Bridge Project. Prepared for Bureau of Land Management by Arcadis, Highlands Ranch, CO, 191 pp

  • Belcher WR (ed) (2004) Death Valley regional ground-water flow system, Nevada and California: hydrogeologic framework and transient ground-water flow model. US Geol Surv Sci Invest Rep 2004–5205, 408 pp

  • Bredehoeft JD, Pinder GF (1973) Mass transport in flowing groundwater. Water Resour Res 9(1):194–210

    Google Scholar 

  • Bond JG, Wood CH (1978) Geologic map of Idaho. Idaho Dept. of Lands, Boise, ID

  • Bureau of Land Management (BLM) (2011) Final environmental impact statement, Blackfoot Bridge Mine, Caribou County, Idaho. Idaho Falls, ID, 647 pp

  • Caine JS, Evans JB, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Cannon MR (1980) Conceptual models of interactions of mining and water resource systems in the southeastern Idaho phosphate field. MSc Thesis, University of Idaho, USA, 106 pp

  • Cherkauer DS (2004) Quantifying ground water recharge at multiple scales using PRMS and GIS. Ground Water 42(1):97–110

    Article  Google Scholar 

  • Dettinger MD, Harrill JR, Schmidt JL (1995) Distribution of carbonate-rock aquifers and the potential for their development, southern Nevada and adjacent parts of California, Arizona, and Utah. US Geol Surv Water Resour Invest Rep 91–4146

  • Desert Research Institute Climate Center (2010) http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?idcond. Accessed September 2010

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice-Hall, New York, 436 pp

    Google Scholar 

  • Dribbs WR, Hunt RJ, Anderson MP (2006) Estimating recharge rates with analytic element models and parameter estimation. Ground Water 44(1):47–55. doi:10.1111/j.1745-6584.2005.00115.x

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, New York, 598 pp

    Google Scholar 

  • Flint AL, Flint LE, Hevesi JA, Blainey JB (2004) Fundamental concepts of recharge in the desert southwest: a regional modeling perspective. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. Water Science and Application 9, AGU, Washington, DC, pp 159–184

    Chapter  Google Scholar 

  • Formation Environmental (2010) DRAFT: Conda/Woodall Mountain Mine RI/FS Groundwater Data Gap Analysis, Simplot Co., June 2010. Formation Environmental, Boulder, CO, 73 pp

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92

  • Hein JR (ed) (2004) Life cycle of the Phosphoria Formation: from deposition to post-mining environment. Handbook of Exploration and Environmental Geochemistry, vol 8. Elsevier, Amsterdam, 662 pp

    Google Scholar 

  • Herring JR, Grauch RI (2004) Lithogeochemistry of the Meade Peak phosphatic shale member of the Phosphoria Formation, southeast Idaho, chap. 12. In: Hein JR (ed) Life cycle of the Phosphoria Formation: from deposition to post-mining environment, vol 8. Elsevier, Amsterdam, pp 321–367

    Chapter  Google Scholar 

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UK

  • Idaho Department of Environmental Quality (IDEQ) (2007) Georgetown Canyon Right Fork mine preliminary assessment report. Submitted to the US EPA by IDEQ, Pocatello, ID, 30 pp

  • Idaho Department of Environmental Quality (IDEQ) (2009) Selenium project southeast Idaho phosphate mining resource area, 11 May–4 June 2009. IDEQ, Pocatello, ID, 182 pp

  • JBR Environmental Consultants (JBR) (2006) Selenium data for southeast Idaho, Prepared for Bureau of Land Management for DRAFT Environmental Impact Statement, Smoky Canyon Mine Panels F and G by JBR, Sandy, UT

  • JBR Environmental Consultants (JBR) (2007) Groundwater flow and solute transport, Smoky Canyon Mine, Panels F and G Extension Area, Final modeling report, Prepared for Bureau of Land Management by JBR, Sandy, UT, 106 pp

  • Johnson BR, Raines GL (1996) Digital Representation of the Idaho State geologic map: a contribution to the Interior Columbia River Basin Ecosystem Management project. US Geol Surv Open-File Rep 95–690

  • Juckem PF, Hunt RJ, Anderson MP (2006) Scale effects of hydrostratigraphy and recharge zonation on base flow. Ground Water 44(3):362–370. doi:10.1111/j.1745-6584.2005.00136.x

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF, Normani SD (2002) Recharge estimation for transient ground water modeling. Ground Water 40(6):638–648

    Article  Google Scholar 

  • Kendy E, Bredehoeft JD (2006) Transient effects of groundwater pumping and surface-water-irrigation returns on streamflow. Water Resour Res 42:W08415. doi:10.1029/2005WR004792

    Article  Google Scholar 

  • Knudsen AC, Gunter ME (2004) The effects of weathering on the mineralogy of the Phosphoria Formation, southeast Idaho, chap. 7. In: Hein JR (ed) Life cycle of the Phosphoria Formation: from deposition to post-mining environment. Elsevier, Amsterdam, pp 169–187

    Chapter  Google Scholar 

  • Konikow LF (2011) The secret to successful solute-transport modeling. Ground Water 49(2):144–159. doi:10.1111/j.1745-6584.2010.00764.x

    Article  Google Scholar 

  • Lee WH (2000) A history of phosphate mining in southeastern Idaho. US Geol Surv Open-File Rep 00–425, 242 pp

  • Lemly AD (1999) Selenium transport and bioaccumulation in aquatic ecosystems: a proposal for water quality criteria based on hydrological units. Ecotoxicol Environ Safety 42:150–156

    Article  Google Scholar 

  • Mars JC, Crowley JK (2003) Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data. Rem Sens Environ 84(3):422–436

    Article  Google Scholar 

  • Mayo AL, Muller AB, Ralston DR (1985) Hydrogeochemistry of the Meade thrust allochthon, southeastern Idaho, U.S.A., and its relevance to stratigraphic and structural groundwater flow control. J Hydrol 76(1–2):27–61

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimension finite-difference ground-water flow model. US Geol Surv Techof Water Resour Invest, book 6, chap. A1, 586 pp

  • MWH Americas (MWH) (2010) Remedial investigation and feasibility study work plan for P4’s Ballard, Henry, and Enoch Valley mines. Prepared for P4 Production. MWH, Salt Lake City, UT, 431 pp

  • Myers T (2007) Hydrogeology, groundwater flow and contaminant transport at the Smoky Canyon Mine, Documentation of a groundwater flow and contaminant transport model, Prepared for Natural Resources Defense Council, San Francisco, CA and Greater Yellowstone Coalition, Idaho Falls, ID, 39 pp

  • Myers T (2009) Groundwater management and coal-bed methane development in the Powder River Basin of Montana. J Hydrol 368:178–193

    Article  Google Scholar 

  • Newfields Inc (2005) Final, site investigation report, Smoky Canyon Mine, Caribou County, Idaho, July 2005, Prepared for Simplot Co. by Newfields, Boulder, CO, 842 pp

  • Nordqvist AW, Tsange YW, Tsang C, Dverstorp B, Andersson J (1996) Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks. J Contam Hydrol 22(1–2):39

    Article  Google Scholar 

  • Osiensky JL, Winter GV, Williams RE (1984) Monitoring and mathematical modeling of contaminated ground-water plumes in fluvial environments. Ground Water 22(3):298–307

    Article  Google Scholar 

  • Ralston DR (1979) Hydrogeology of the Smoky Canyon mine site: a reconnaissance. Prepared for Simplot by University of Idaho, Moscow, ID, 36 pp

  • Ralston DR, Williams RE (1979) Groundwater flow systems in the western phosphate field in Idaho. J Hydrol 43(1–4):239–264. doi:10.1016/0022-1694(79)90175-6

    Article  Google Scholar 

  • Ralston DR, Mohammad OMJ, Robinette MF, Edwards TK (1977) Solutions to water resources problems associated with open-pit mining in the phosphate area of southeastern Idaho. Completion report for groundwater study contract No. 50–897, US Forest Service. University of Idaho, College of Mines, Moscow, ID, 136 pp

  • Ralston DR, Brooks TD, Cannon TF, Corbet TF, Singh H, Winter GV, Wai CM (1979) Interactions of mining and water resource systems in the southeastern Idaho phosphate field, Research technical completion report, Project C-7651, University of Idaho, Moscow, ID, 214 pp

    Google Scholar 

  • Ralston DR, Mayo AL, Arrigo JL, Baglio JV, Coleman LM, Hubbell JM, Souder K (1983) Thermal ground water flow systems in the thrust zone in southeastern. Research technical completion report, Idaho Water and Energy Research Institute, Moscow, ID, 336 pp

  • Schuler CA, Anthony RG, Ohlendorf HM (1990) Selenium in wetlands and waterfowl foods at Kesterson Reservoir, California, 1984. Arch Env Contam Toxic 19(6):845–853. doi:10.1007/BF01055049

    Article  Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6):904–922

    Article  Google Scholar 

  • Stone DB, Moomaw CL, Davis A (2001) Estimating recharge distribution by incorporating runoff from mountainous areas in an alluvial basin in the Great Basin region of the Southwestern United States. Ground Water 39(6):807–818

    Article  Google Scholar 

  • Tetra Tech (2002) Final area wide human health and ecological risk assessment, selenium project, southeast Idaho phosphate mining resource area. Prepared for Idaho Dept. of Environmental Quality by Tetra Tech, Boise, ID, 333 pp

  • Tuttle PL, Hoffman RJ, Wiemeyer SN, Miesner JF (2000) Monitoring of inorganic contaminants associated with irrigation drainage in Stillwater National Wildlife Refuge and Carson Lake, west-central Nevada, 1994–96. US Geol Surv Sci Invest Rep 00–4173

  • US Forest Service (USFS) (2009) Upper Blackfoot Watershed analysis. Caribou-Targhee National Forest, Idaho Falls, ID, 280 pp

  • Whetstone Assoc. (2009) Final baseline geochemical characterization study, Blackfoot Bridge Mine EIS, Prepared for US BLM on behalf of Monsanto Corp./P4 Production by Whetstone, Gunnison, CO, 2644 pp

  • Winter GV (1980) Groundwater flow systems of the Phosphate Sequence, Caribou County, Idaho, Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 120 pp

    Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33(6):905–908

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Documentation and user’s guide. Contract report SERDP-99-1, US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS

Download references

Acknowledgements

Roger Congdon and John Bredehoeft provided valuable review and helpful comments on the first version of the manuscript. The Greater Yellowstone Coalition funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, T. Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21, 655–671 (2013). https://doi.org/10.1007/s10040-013-0953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0953-8

Keywords

Navigation