Skip to main content
Log in

Temporal variations in the depth-specific hydrochemistry and sewage-related microbiology of an urban sandstone aquifer, Nottingham, United Kingdom

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The temporal and spatial characteristics of groundwater recharge in urban environments remain poorly understood. Depth-specific monitoring of groundwater quality in the Triassic Sandstone underlying the city of Nottingham, UK, indicates that contamination results primarily from sewage and atmospheric sources. The temporal and depth-specific characteristics of microbial and inorganic (e.g. nitrate, chloride, sulphate) contamination over the investigation period differ significantly and reflect the contrasting transport characteristics of surface-loaded solutes and particulate microbial species (bacteria and viruses) in the Triassic Sandstone. Differences result from a variety of factors, which include microbial die-off, dilution, and the contaminant-source characteristics. Observations in this study show that low levels of microbial contamination should be expected at depth in fissured sandstone due to aquifer heterogeneities such as fissuring and the occurrence of mudstone bands, though the magnitude of this contamination will vary over time. Furthermore, urban groundwater-protection measures based on solute-transport estimates may not be applicable to microbial contamination.

Résumé

Les caractéristiques temporelles et spatiales de la recharge de nappes en milieu urbain sont mal connues. Le suivi à une profondeur spécifique de la qualité des eaux souterraines dans les grès triasiques sous la ville de Nottingham (Grande-Bretagne) indique que la contamination provient principalement des égouts et de l'atmosphère. Les caractéristiques temporelles et à des profondeurs spécifiques de la contamination microbienne et minérale (par exemple les nitrates, les chlorures et les sulfates) diffèrent de manière significative au cours de la période d'étude et reflètent les caractères contrastés du transport de solutés acquis en surface et des espèces microbiennes des colloïdes (bactéries et virus) dans les grès du Trias. Des différences résultent d'une variété de facteurs tels que l'extinction microbienne, la dilution et les caractéristiques des sources de contaminants. Des observations faites dans cette étude montrent que les faibles niveaux de contamination microbienne peuvent être trouvés en profondeur dans les grès fissurés du fait d'hétérogénéités comme la fissuration et la présence de niveaux pélitiques indurés, même si l'ordre de grandeur de cette contamination varie au cours du temps. En outre, des mesures de protection des eaux souterraines en milieu urbain basées sur des estimations du transport de solutés peuvent ne pas être applicables à la contamination microbienne.

Resumen

Actualmente, no se conoce con detalle las características temporales y espaciales de la recarga de acuíferos en ambientes urbanos. El muestreo selectivo en profundidad de la calidad de las aguas subterráneas en el acuífero formado por las areniscas Triásicas de la ciudad de Nottingham (Reino Unido) indica que la contaminación procede sobretodo de las aguas residuales y de fuentes atmosféricas. Las características temporales y verticales de la contaminación microbiana e inorgánica (por nitratos, cloruros y sulfatos) detectadas durante la investigación difieren significativamente y reflejan el contraste en el comportamiento dentro del acuífero de los solutos transportados desde la superficie y de las especies particuladas microbianas (bacterias y virus). Las diferencias son consecuencia de factores varios, incluyendo la inactivación microbiana, la dilución y las características de la fuente contaminante. El estudio demuestra que cabe esperar bajos niveles de contaminación microbiana en profundidad en areniscas fisuradas, debido a heterogeneidades tales como las propias fisuras y la intercalación de niveles lutíticos, aunque la magnitud de esta contaminación variará con el tiempo. Más aún, es posible que las medidas de protección de acuíferos en zonas urbanas que se basan en estimaciones de transporte de solutos no sean aplicables a la contaminación microbiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Adams MH (1959) Bacteriophages. Interscience, London

  • Alves PF, Tellam JH (2001) The impact of horse dung on urban groundwater quality in the Birmingham Triassic aquifer, UK. In: Thornton S, Oswald S (eds) Proc 3rd Int Conf on Groundwater Quality, Groundwater Quality 2001, University of Sheffield, June, pp 188–190

  • Anonymous (1982) The bacteriological examination of drinking water supplies—methods for the examination of waters and associated materials. Reports on Public Health and Medical Subjects, no 71. HMSO, London

  • Anonymous (1994) The microbiology of water 1994. Part 1. Drinking water. HMSO, London

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. AA Balkema, Rotterdam, 536 pp

  • Barker AP, Newton RJ, Bottrell SH (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl Geochem 13:735–749

    Article  CAS  Google Scholar 

  • Barrett MH, Yang Y, Lerner DN, French MJ, Tellam JH (1997) The impact of cities on the quantity and quality of their underlying groundwater. Incorporating the importance of non-agricultural sources of nitrate in UK groundwaters. Final Report to the EPSRC, University of Bradford

  • Barrett MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources. A review and case study in Nottingham, UK. Water Res 33(14):3083–3097

    Article  CAS  Google Scholar 

  • Carmon N, Shamir U, Meiron-Pistner S (1997) Water sensitive urban planning. J Environ Plan Manage 40(4):413–434

    Article  Google Scholar 

  • Chapron CD, Balester NA, Fontaine JH, Frades CN, Marggolin AB (2000) Detection of astroviruses, enteroviruses and adenoviruses types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cell culture-nested PCR procedure. Appl Environ Microbiol 66(6):2520–2525

    Article  CAS  PubMed  Google Scholar 

  • Charsley TJ, Rathbone PA, Lowe DJ (1990) Nottingham: a geological background for planning and development. Tech Rep WA/90/1, p 82. British Geological Society, Keyworth, Nottingham

    Google Scholar 

  • Cherry JA, Gilham RW, Anderson EG, Johnson PE (1983) Migration of contaminants at a landfill: a case study. 2. Groundwater monitoring devices. J Hydrol 63:31–49

    CAS  Google Scholar 

  • CIRIA (1989) The engineering implications of rising groundwater levels in the deep aquifer beneath London. Spec Publ 69, 116 pp. Construction Industry Research and Information Association, London

  • Cronin AA (2000) Groundwater flow and isotope geochemical modelling of the Triassic sandstone aquifer, Northern Ireland. PhD Thesis, School of Civil Engineering, Queens University Belfast, 272 pp

  • Cronin AA, Pedley S (2002) Microorganisms in groundwater. Tracers and troublemakers. EA R&D Tech Rep P2-290/TR. Environment Agency, Bristol, 40 pp

  • Cronin AA, Elliot T, Yang Y, Kalin RM (2000) Geochemical modelling and isotope studies in the Sherwood sandstone aquifer, Lagan Valley, Northern Ireland. In: Dassargues A (ed) Proc TRAM 2000 Conf Tracers and Modelling in Hydrogeology, Liege, Belgium, May, IAHS Publ 262/2000, IAHS Press, Wallingford, pp 425–431

  • Custudio E (1997) Groundwater quantity and quality changes related to land and water management around urban areas: blessings and misfortunes. In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment vol 1. Problems, Processes and Management, Nottingham, pp 11–22

  • Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46:2069–2081

    CAS  Google Scholar 

  • Edwards KC (1966) Nottingham and its region. Prepared for the meeting of the British Association for the Advancement of Science, Nottingham

  • Edworthy KJ (1989) Waste disposal and groundwater management. J Inst Water Environ Manage 3:109–114

    CAS  Google Scholar 

  • Eiswirth M, Hotzl H (1994) Groundwater contamination by leaky sewer systems. In: National Conf of Institution of Engineers, Water Down Under, Adelaide, Australia, November, pp 111–114

  • Flipse JR, Katz BG, Lindner JB, Markel R (1984) Sources of nitrate in groundwater in a sewered housing development, Central Long Island, New York. Ground Water 22(4):418–426

    CAS  Google Scholar 

  • Foster SSD, Morris BL (1994) Effects of urbanisation on groundwater recharge. In: Williamson WB (ed) Groundwater Problems in Urban Areas, ICE Conf, London, June 1993, Thomas Telford, London

  • Foster SSD, Morris B, Lawerence A, Chilton J (1990) Groundwater impacts and issues in developing cities. An introductory review. In: Chilton J (ed) Groundwater in the urban environment: selected city profiles. AA Balkema, Rotterdam, pp 3–16

    Google Scholar 

  • Green J, Gallimore C, Norcott JP, Lewis D, Brown DW (1995) Broadly reactive reverse transcriptase polymerase chain reaction for the diagnosis of SRSV-associated gastroenteritis. J Med Virol 47:392–398

    CAS  PubMed  Google Scholar 

  • Howard KWF (2001) Polluted groundwater: deadly lessons from Walkerton, Ontario, Canada. In: Seiler, Wohnlich (eds) Proc IAH 2001 Congr, New Approaches in Characterising Groundwater Flow, Munich, Germany, September, AA Balkema, Rotterdam, pp 521–525

  • Howard KWF, Boyce JI, Livingstone SJ, Salvatori SL (1993) Road salt impacts on groundwater quality: the worst is still to come! GSA Today 3(12):318–321

    Google Scholar 

  • Howard KWF, Gerber RE (1997) Do tills beneath urban Toronto provide adequate groundwater protection? In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment vol 1. Problems, Processes and Management, Nottingham, pp 433–438

  • Iturriza Gomara M, Green J, Brown DWG, Ramsay M, Desselberger U, Gray J (2000) Seroepidemiological and molecular surveillance of human rotavirus infections in the UK. Public Health Laboratory Service, London

  • Jeffcoat A (2001) Characterisation and modelling of the Permo-Triassic sandstone aquifer of Cheshire. PhD Thesis, University of Birmingham, 200 pp

  • Kimblin RT (1995) The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England, and some UK comparisons. J Hydrol 172:293–311

    Article  CAS  Google Scholar 

  • Ku HFH, Hagelin NW, Buxton HT (1992) Effects of urban storm-runoff control on groundwater recharge in Nassau county, New York. Ground Water 30(4):507–514

    Google Scholar 

  • Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882

    CAS  Google Scholar 

  • Lawerence AR, Stuart ME, Barker JA, Tester DJ (1996) Contamination of chalk groundwater by chlorinated solvents: a case study of deep penetration by non-aqueous phase liquids. J CIWEM 10:263–272

    Google Scholar 

  • Lerner DN (1996) Urban groundwater: an asset for a sustainable city, Eur Water Pollut Control 6(5):43

    Google Scholar 

  • Lerner DN (1997) Too much or too little. Recharge in urban areas. In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment, Vol 1. Problems, Processes and Management, Nottingham, pp 41–47

  • Lerner DN, Issar SI, Simmers I (1990) Recharge due to urbanisation. Groundwater recharge. A guide to understanding and estimating natural recharge, Int Contrib Hydrogeol 8:201–214

    Google Scholar 

  • Lopes TJ, Bender DA (1998) Non-point sources of volatile organic compounds in urban areas: relative importance of land surfaces and air. Environ Pollut 101:221–230

    Article  CAS  Google Scholar 

  • Morris BL, Lawerence AR, Stuart M (1994) Impact of urbanisation on groundwater quality project summary report. Rep WC/94/56, prepared for the Overseas Development Administration Project 91/13. British Geological Survey, Keyworth, Nottingham

  • Mounts AW, Ando T, Koopmans M, Bresee JS, Noel J, Glass RI (2000) Cold weather seasonality of gastroenteritis associated with Norwalk-like viruses. J Infect Dis 181(Suppl 2):284–287

    Google Scholar 

  • Nazari MN, Burston MW, Bishop PK, Lerner DN (1993) Urban groundwater pollution: a case study from Coventry, UK. Ground Water 31(3):417–424

    CAS  Google Scholar 

  • Parker JW, Perkins MA, Foster SSD (1982) Groundwater quality stratification: its relevance to sampling strategy. Publ 31. Commisie voor Hydrologisch Onderzoek, TNO, Delft, pp 43–54

    Google Scholar 

  • Powell KL, Barrett MH, Pedley S, Tellam JH, Stagg KA, Greswell RB, Rivett MO (2000a) Enteric virus detection in groundwater using a glasswool trap. In: Sililo O et al. (eds) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 813–816

  • Powell KL, Tellam JH, Barrett MH, Pedley S, Stagg K, Greswell RB, Rivett MO (2000b) National groundwater and contaminated land centre project NC/99/40. Optimisation of a new method for detection of viruses in groundwater. Report to the Environment Agency, Bristol

  • Powell KL, Cronin AA, Barrett MH, Sellwood J, Pedley S (2001) Distribution of microbiological contaminants in Triassic sandstone urban aquifers. EA R&D Tech Rep P2-255/TR, July. Final Report to the Environment Agency, Bristol, 26 pp

  • Powell KL, Taylor RG, Cronin AA, Barrett MH, Pedley S, Sellwood J, Trowsdale S, Lerner DN (2003) Microbial contamination of two urban sandstone aquifers in the UK. Water Res 37(2):339–352

    Article  CAS  PubMed  Google Scholar 

  • Rossi P (1992) Use of new bacteriophage as groundwater tracers: decay rate and adsorption. In: Hotzl, Werner (eds) Tracer hydrology. AA Balkema, Rotterdam, pp 68–70

  • Sharma ML, Herne D, Byrne JD (1994) Nutrient discharge beneath urban lawns to a sandy aquifer systems. In: Proc Natl Conf of Institution of Engineers, Water Down Under, Adelaide, Australia, November, pp 309–315

  • Standing Committee of Analysts (1995) Methods for the isolation and identification of human enteric viruses from waters and associated materials. Methods for the examination of waters and associated materials. HMSO, London

  • Squillance PJ, Zogorski JS, Wilbur WG, Price CV (1996) Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States 1993–94. Environ Sci Technol 30:1721–1730

    Article  CAS  Google Scholar 

  • Streetly HR, Hamilton ACL, Bets C, Tellam JH, Herbert AW (2002) Reconnaissance tracer tests in the Triassic sandstone aquifer north of Liverpool, UK. Q J Eng Geol Hydrogeol 35(2):155–166

    Google Scholar 

  • Taylor RG, Barrett MH, Baines OP, Trowsdale SA, Lerner DN, Thornton SF (2000) Depth variations in aquifer hydrochemistry using a low-cost, multilevel piezometer. In: Sililo O et al. (eds) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 651–654

  • Tellam J (1995) Urban groundwater pollution in the Birmingham Triassic sandstone aquifer. In: Proc 4th Annu IBC Conf on Groundwater Pollution, London, 15–16 March, 10 pp

  • United States Geological Survey (1999) The quality of our nation's waters: nutrients and pesticides. USGS Circ 1225 (8-6-99)

  • Walton NRG (1981) A detailed hydrochemical study of groundwaters from the Triassic sandstone aquifer of south-west England. Institute of Geological Sciences Rep 81/5. HMSO, London,43 pp

  • Yang Y, Lerner DN, Barrett MH, Tellam JH (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198

    Article  CAS  Google Scholar 

  • Yates MV, Gerba CP, Kelley LM (1985) Virus persistence in groundwater. Appl Environ Microbiol 49(4):778–781

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Environment Research Council (Grant No. GSTO 21986) and the Environment Agency of England and Wales (Grant No. P2-255/TR). The views expressed are those of the authors. We would also like to thank Jane Sellwood and Jane Shore (Public Health Laboratory Service), the Nottingham City Council, and Severn-Trent Water Public Limited Company for their cooperation, and John Tellam (University of Birmingham) and Paul Dewsbury (University of Sheffield) and Jason Fairbairn (Environment Agency of England and Wales).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Cronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, A.A., Taylor, R.G., Powell, K.L. et al. Temporal variations in the depth-specific hydrochemistry and sewage-related microbiology of an urban sandstone aquifer, Nottingham, United Kingdom. Hydrogeology Journal 11, 205–216 (2003). https://doi.org/10.1007/s10040-002-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-002-0246-0

Keywords

Navigation