Skip to main content
Log in

X-ray study of fast and slow granular flows with transition jump in between

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Flows of dry granular materials on a smooth chute are investigated by X-ray radiography. Discontinuities in height, velocity and density, namely jumps, are produced under different incoming steady-flow conditions by varying the mass discharge and the slope angle. This allows to confirm and further reveal the phase-diagram of standing granular jump patterns with diffuse and weakly compressible jumps that move to steep and highly compressible jumps when increasing the slope angle and/or decreasing the mass discharge. A wide range of steady-flow states before and after the jumps are achieved within each of the different experiments over variable input conditions. The flow densities are then measured relatively accurately by the X-ray radiography. This allows to highlight a transition from the supercritical flows before the jump to the subcritical flows after the jump through hysteresis of the depth-averaged effective friction, if incompressible depth-averaged momentum conservation is considered valid for the regions before and after the jump. In addition, the X-ray data of both free-surface and density profiles across the standing granular jumps are successfully used to further validate a recently-established augmented Bélanger equation for the jump height ratio.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Brennen, C., Sieck, K., Paslaski, J.: Hydraulic jumps in granular material flow. Powder. Technol. 35(1), 31–37 (1983). https://doi.org/10.1016/0032-5910(83)85023-2. (http://www.sciencedirect.com/science/article/pii/0032591083850232)

    Article  Google Scholar 

  2. Brodu, N., Richard, P., Delannay, R.: Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87(2), 022202 (2013)

    Article  ADS  Google Scholar 

  3. Campbell, C., Brennen, C., Sabersky, R.: Flow regimes in inclined open-channel flows of granular materials. Powder. Technol. 41(1), 77–82 (1985). https://doi.org/10.1016/0032-5910(85)85077-4. (http://www.sciencedirect.com/science/article/pii/0032591085850774)

    Article  Google Scholar 

  4. Edwards, A., Gray, J.: Erosion-deposition waves in shallow granular free-surface flows. J. Fluid. Mech. 762, 35–67 (2015). https://doi.org/10.1017/jfm.2014.643

    Article  MathSciNet  ADS  Google Scholar 

  5. Edwards, A., Russell, A., Johnson, C., Gray, J.: Frictional hysteresis and particle deposition in granular free-surface flows. J. Fluid. Mech. 875, 1058–1095 (2019). https://doi.org/10.1017/jfm.2019.517

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Faug, T.: Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Phys. Rev. E 92(6), 062310 (2015)

    Article  ADS  Google Scholar 

  7. Faug, T.: Impact force of granular flows on walls normal to the bottom: slow versus fast impact dynamics. Can. Geotech. J. 58(1), 114–24 (2021)

    Article  Google Scholar 

  8. Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80, 021305 (2009). https://doi.org/10.1103/PhysRevE.80.021305. (https://link.aps.org/doi/10.1103/PhysRevE.80.021305)

    Article  ADS  Google Scholar 

  9. Faug, T., Childs, P., Wyburn, E., Einav, I.: Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids. 27(7), 073304 (2015)

    Article  ADS  Google Scholar 

  10. Gray, J., Tai, Y.C., Noelle, S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid. Mech. 491, 161–181 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Guillard, F., Marks, B., Einav, I.: Dynamic x-ray radiography reveals particle size and shape orientation fields during granular flow. Sci. Rep. 7(1), 8155 (2017)

    Article  ADS  Google Scholar 

  12. Jaworski, A., Dyakowski, T.: (2007) Observations of “granular jump” in the pneumatic conveying system. Exp. Thermal. Fluid. Sci. 31(8), 877–885 . https://doi.org/10.1016/j.expthermflusci.2006.09.003. (https://www.sciencedirect.com/science/article/pii/S0894177706001452)

  13. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  14. Josserand, P., Lagrée, P.Y., Lhuillier, D.: Granular pressure and the thickness of a layer jamming on a rough incline. Europhys. Lett. 73(3), 363–369 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. Lu, K., Brodsky, E.E., Kavehpour, H.P.: Shear-weakening of the transitional regime for granular flow. J. Fluid. Mech. 587, 347–372 (2007). https://doi.org/10.1017/S0022112007007331

    Article  MATH  ADS  Google Scholar 

  16. Méjean, S., Faug, T., Einav, I.: A general relation for standing normal jumps in both hydraulic and dry granular flows. J. Fluid. Mech. 816, 331–351 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  17. Méjean, S., Guillard, F., Faug, T., Einav, I.: Length of standing jumps along granular flows down smooth inclines. Phys. Rev. Fluids. 5, 034303 (2020). https://doi.org/10.1103/PhysRevFluids.5.034303. (https://link.aps.org/doi/10.1103/PhysRevFluids.5.034303)

    Article  ADS  Google Scholar 

  18. Morrison, H., Richmond, O.: Application of spencer’s ideal soil model to granular materials flow. J. Appl. Mech. 43(1), 49–53 (1976)

    Article  ADS  Google Scholar 

  19. Nakagawa, M., Altobelli, S., Caprihan, A., Fukushima, E., Jeong, E.K.: Non-invasive measurements of granular flows by magnetic resonance imaging. Exp. Fluids. 16, 54–60 (1993)

    Article  Google Scholar 

  20. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid. Mech. 453, 133–151 (2002)

    Article  ADS  Google Scholar 

  21. Russell, A.S., Johnson, C.G., Edwards, A.N., Viroulet, S., Rocha, F.M., Gray, J.M.N.T.: Retrogressive failure of a static granular layer on an inclined plane. J. Fluid. Mech. 869, 313–340 (2019). https://doi.org/10.1017/jfm.2019.215

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Samadani, A., Mahadevan, L., Kudrolli, A.: Shocks in sand flowing in a silo. J. Fluid. Mech. 452, 293–301 (2002). https://doi.org/10.1017/S0022112001006991

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Sarno, L., Carleo, L., Papa, M.N., Armanini, A.: Optical method for measuring the volume fraction of granular media: application to faced-centered cubic lattices of monodisperse spheres. Phys. Rev. E 101, 022904 (2020). https://doi.org/10.1103/PhysRevE.101.022904. (https://link.aps.org/doi/10.1103/PhysRevE.101.022904)

    Article  ADS  Google Scholar 

  24. Savage, S.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid. Mech. 92, 53–96 (1979). https://doi.org/10.1017/S0022112079000525

    Article  MATH  ADS  Google Scholar 

  25. Sheng, L., Kuo, C., Tai, Y., Hsiau, S.: Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute. Exp. Fluids. 51, 1329 (2011)

    Article  Google Scholar 

  26. Smith, G., Rowley, P., Williams, R., Giordano, G., Trolese, M., Silleni, A., Parsons, D., Capon, S.: A bedform phase diagram for dense granular currents. Nat. Commun. 11, 2873 (2020). https://doi.org/10.1038/s41467-020-16657-z

    Article  ADS  Google Scholar 

  27. Tai, Y., Lin, Y.: A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone. Phys. Fluids. 20(12), 123302 (2008). https://doi.org/10.1063/1.3033490

    Article  MATH  ADS  Google Scholar 

  28. Xiao, H., Hruska, J., Ottino, J., Lueptow, R., Umbanhowar, P.: Unsteady flows and inhomogeneous packing in damp granular heap flows. Phys. Rev. E 98, 032906 (2018). https://doi.org/10.1103/PhysRevE.98.032906. (https://link.aps.org/doi/10.1103/PhysRevE.98.032906)

    Article  ADS  Google Scholar 

  29. Zhu, Y., Delannay, R., Valance, A.: High-speed confined granular flows down smooth inclines: scaling and wall friction laws. Granul. Matter. 22, 1–12 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Labex Tec21, which is part of the ANR ”Investissements d’avenir” program for funding. S.M. acknowledges support from both the Idex Graduate School of University of Grenoble Alpes (ANR ”Investissements d’avenir” program) and the Region Auvergne-Rhône-Alpes (ExploRa Doc scholarship scheme). T.F. thanks funding by French ministries ”Ministère de l’Europe et des Affaires Etrangères” and ”Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation” through the PHC project GrainFlow (FASIC 2017 program). F.G. and I.E. thanks the Australian Research Council for financial support through grant DP190103487. Finally, the authors would like to thank two anonymous referees for their insightful comments and suggestions on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Faug.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méjean, S., Guillard, F., Faug, T. et al. X-ray study of fast and slow granular flows with transition jump in between. Granular Matter 24, 26 (2022). https://doi.org/10.1007/s10035-021-01194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01194-3

Keywords

Navigation