Skip to main content
Log in

Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Some granular materials including spherical glass beads may suffer from stick-slip instabilities which are characterized by successive fluctuations in the stress–strain behavior. Under various loading conditions, these stick-slip failures cause a portion of the stored strain energy within the granular medium to be suddenly released. It is accompanied by a partial collapse and volumetric contraction occurring at the same time. In order to understand the factors behind the stick-slip mechanism, a series of laboratory experiments were carried out in this study. Cylindrical specimens constituted by dry loosely-packed spherical glass beads were tested in triaxial compression. The effects of confining pressure and strain rate on stick-slip behavior were investigated. The experimental results show that as the confining pressure is increased, both the deviatoric stress amplitude and the oscillation amplitude increase. On the other hand, any increase in the strain rate causes the deviatoric stress amplitude to decrease. However, the oscillation amplitude is not affected by the strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adjemian, F., Evesque, P.: Experimental study of stick-slip behaviour. Int. J. Numer. Anal. Methods Geomech. 28, 501–530 (2004)

    Article  Google Scholar 

  2. Agnolin, I., Jenkins, J.T., La-Ragione, L.: A continuum theory for a random array of identical, elastic, frictional disks. Mech. Mater. 38, 687–701 (2006)

    Article  Google Scholar 

  3. Aharonov, E., Sparks, D.: Stick-slip motion in simulated granular layers. J. Geophys. Res. 109, B09306 (2004)

    Article  ADS  Google Scholar 

  4. Alonso-Marroquin, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009)

    Article  MATH  Google Scholar 

  5. Alshibli, K.A., Roussel, L.E.: Experimental investigation of slip-stick behaviour in granular materials. Int. J. Numer. Anal. Methods Geomech. 30, 1391–1407 (2006)

    Article  Google Scholar 

  6. Anthony, J.L., Marone, C.: Influence of particle characteristics on granular friction. J. Geophys. Res. 110, B08409 (2005)

    Article  ADS  Google Scholar 

  7. Antony, S.J., Kuhn, M.R., Barton, D.C., Bland, R.: Strength and signature of force networks in axially compacted sphere and non-sphere granular media: micromechanical investigations. J. Phys. D Appl. Phys. 38, 3944–3952 (2005)

    Article  ADS  Google Scholar 

  8. Atman, A.P.F., Claudin, P., Combe, G., Martins, G.H.B.: Mechanical properties of inclined frictional granular layers. Granul. Matter 16, 193–201 (2014)

    Article  Google Scholar 

  9. Bardet, J.P.: Experimental Soil Mechanics. Prentice Hall Inc., New Jersey (1997)

  10. Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13, 503–510 (2011)

    Article  Google Scholar 

  11. Brace, W.F., Byerlee, J.D.: Stick-slip as a mechanism for earthquakes. Science 153, 990–992 (1966)

    Article  ADS  Google Scholar 

  12. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57(3), 341–371 (1967)

    Google Scholar 

  13. Cabalar, A.F., Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behaviour of a sand. Granul. Matter 12, 87–95 (2010)

    Article  Google Scholar 

  14. Cundall, P.A.: A computer model for simulating progressive large-scale movements in blocky rock systems. In: Proceedings of the symposium international society of rock mechanics, Nancy, France, vol 2, no 8, pp 132–150 (1971)

  15. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  16. Doanh, T., Hoang, M.T., Roux, J.-N., Dequeker, C.: Stick-slip behaviour of model granular materials in drained triaxial compression. Granul. Matter 15, 1–23 (2013)

    Article  Google Scholar 

  17. Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010)

    Article  ADS  Google Scholar 

  18. Le Bouil, A., Amon, A., McNamara, S., Crassous, J.: Emergence of cooperativity in plasticity of soft glassy materials. Phys. Rev. Lett. 112, 246001 (2014)

    Article  ADS  Google Scholar 

  19. Le Bouil, A., Amon, A., Sangleboeuf, J.C., Orain, H., Bésuelle, P., Viggiani, G., Chasle, P., Crassous, J.: A biaxial apparatus for the study of heterogeneous and intermittent strains in granular materials. Granul. Matter 16, 1–8 (2014)

    Article  Google Scholar 

  20. Liu, A.J., Nagel, S.R.: Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  Google Scholar 

  21. Mair, K., Frye, K.M., Marone, C.: Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res. 107(B10), 2219 (2002)

  22. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  23. Michlmayr, G., Or, D.: Mechanisms for acoustic emissions generation during granular shearing. Granul. Matter 16, 627–640 (2014)

    Article  Google Scholar 

  24. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granul. Matter 12, 527–541 (2010)

    Article  MATH  Google Scholar 

  25. Qadir, A., Qing-Fan, S., Xuan-Wen, L., Gang, S.: Effects of granular size on stress transmission in a granular column. Chin. Phys. B 19(3), 034601 (2010)

    Article  ADS  Google Scholar 

  26. Radjai, F., Jean, M., Moreau, J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996)

    Article  ADS  Google Scholar 

  27. Savage, H.M., Marone, C.: Effects of shear velocity oscillations on stick-slip behavior in laboratory experiments. J. Geophys. Res. 112, B02301 (2007)

    ADS  Google Scholar 

  28. Sun, Q., Song, S., Jin, F., Bi, Z.: Elastic energy and relaxation in triaxial compressions. Granul. Matter 13, 743–750 (2011)

    Article  Google Scholar 

  29. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  30. Travers, T., Bideau, D.E., Gervois, A., Troadec, J.P., Messager, J.C.: Uniaxial compression effects on 2D mixtures of ’hard’ and ’soft’ cylinders. J. Phys. A Math. Gen. 19, L1033–L1038 (1986)

    Article  ADS  Google Scholar 

  31. Wang, W., Gu, W., Liu, K.: Force chain evolution and force characteristics of shearing granular media in Taylor-Couette geometry by DEM. Tribol. Trans. 58, 197–206 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank reviewers and editors for comments that led to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Cabalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozbay, A., Cabalar, A.F. Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material. Granular Matter 18, 60 (2016). https://doi.org/10.1007/s10035-016-0664-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0664-7

Keywords

Navigation