Skip to main content
Log in

The collapse of a cylindrical cavity in a granular medium

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A cylindrical cavity in a noncohesive granular medium will collapse under gravity, leaving a circular crater in the surface of the material. We study this process through experiment and numerical modeling. Experimentally, we determine the shape and dimensions of craters formed by the collapse of a cylindrical cavity in a bed of small glass beads. Using a depth-averaged continuum model with cylindrical symmetry, we calculate the shape of the free surface both during and after the collapse. We use the model to study the energetics of the collapse process and investigate the dependence of the final crater on the initial shape of the cavity and the initial velocity field. While the shapes of the final craters are not identical in model and experiment, we find good qualitative agreement in aspect ratio and slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lajeunesse E., Monnier J.N., Homsy G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)

    Article  ADS  Google Scholar 

  2. Balmforth N.J., Kerswell R.R.: Granular collapse in two dimensions. J. Fluid. Mech. 538, 399–428 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Siavoshi S., Kudrolli A.: Failure of a granular step. Phys. Rev. E. 71, 051302 (2005)

    Article  ADS  Google Scholar 

  4. Lube G., Huppert H.E., Sparks R.S.J., Freundt A.: Static and flowing regions in granular collapses down channels. Phys. Fluids 19, 043301 (2007)

    Article  ADS  Google Scholar 

  5. Hungr O.: Simplified models of spreading flow of dry granular material. Can. Geotech. J. 45, 1156–1168 (2008)

    Article  Google Scholar 

  6. Lacaze L., Phillips J.C., Kerswell R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)

    Article  ADS  Google Scholar 

  7. de Vet S.J., Johannes B., Hill K.M., de Bruyn J.R.: Collapse of a rectangular well in a quasi-two-dimensional granular bed. Phys. Rev. E 82, 041304 (2010)

    Article  ADS  Google Scholar 

  8. Nagel S.R.: Instabilities in a sandpile. Rev. Mod. Phys. 64, 321 (1992)

    Article  ADS  Google Scholar 

  9. Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542–548 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    Article  ADS  MATH  Google Scholar 

  11. GDR-MiDi: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  12. Pouliquen O., Cassar C., Jop P., Forterre Y., Nicolas M.: Flows of dense granular material: towards simple constitutive laws. J. Stat. Mech. 2006, P07020 (2006)

    Article  Google Scholar 

  13. Jop P., Forterre Y., Pouliquen O.: A consitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  14. Forterre Y., Pouliquen O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kerswell, R.R.: Dam break with coulomb friction: a model for granular slumping? Phys. Fluids 17, 057101 (2005)

    Google Scholar 

  16. Lube G., Huppert H.E., Sparks R.S.J., Freundt A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)

    Article  ADS  Google Scholar 

  17. Staron L., Hinch E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Thompson E.L., Huppert H.E.: Granular column collapses: further experimental results. J. Fluid Mech. 575, 177–186 (2007)

    Article  ADS  MATH  Google Scholar 

  19. Zenit R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031703 (2005)

    Article  ADS  Google Scholar 

  20. Lajeunesse E., Mangeney-Castelnau A., Vilotte J.P.: Phys. Fluids 16, 2371 (2004)

    Article  ADS  Google Scholar 

  21. Lube G., Huppert H.E., Sparks R.S.J., Hallworth M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175–199 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Lacaze L., Kerswell R.R.: Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102, 108305 (2009)

    Article  ADS  Google Scholar 

  23. Boutreux, T., de Gennes, P.G.: Étalement d’une marche de sable: le problème du Sinaï. C.R. Acad. Sci. Paris 325, 85–89 (1997)

    ADS  MATH  Google Scholar 

  24. Mangeney-Castelnau A., Bouchut F., Vilotte J.P., Lajeunesse E., Aubertin A., Pirulli M.: On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)

    Article  ADS  Google Scholar 

  25. Crosta G.B., Imposimato S., Roddeman D.: Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009)

    Article  ADS  Google Scholar 

  26. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Uehara J.S., Ambroso M.A., Ojha R.P., Durian D.J.: Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90(19), 194301 (2003)

    Article  ADS  Google Scholar 

  28. Walsh A.M., Holloway K.E., Habdas P., de Bruyn J.R.: Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91(10), 104301 (2003)

    Article  ADS  Google Scholar 

  29. Newhall K.A., Durian D.J.: Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68, 060301 (2003)

    Article  ADS  Google Scholar 

  30. de Bruyn J.R., Walsh A.M.: Penetration of spheres into loose granular media. Can. J. Phys 82, 439 (2004)

    Article  ADS  Google Scholar 

  31. Zheng Z.J., Wang Z.T., Qiu Z.G.: Impact craters in loose granular media. Eur. Phys. J. E 13, 321–324 (2004)

    Article  Google Scholar 

  32. Lohse D., Bergman R., Mikkelsen R., Zeilstra C., van der Meer D., Versluis M., van der Weel K., van der Hoef M., Kuipers H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93(19), 198003 (2004)

    Article  ADS  Google Scholar 

  33. Ambroso M.A., Santore C.R., Abate A.R., Durian D.J.: Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305 (2005)

    Article  ADS  Google Scholar 

  34. Katsuragi H., Durian D.: Unified force law for granular impact cratering. Nat. Phys. 3(10), 420 (2007)

    Article  Google Scholar 

  35. de Vet S.J., de Bruyn J.R.: Shape of impact craters in granular media. Phys. Rev. E 76, 041306 (2007)

    Article  ADS  Google Scholar 

  36. Deboeuf S., Gondret P., Rabaud M.: Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79, 041306 (2009)

    Article  ADS  Google Scholar 

  37. Melosh H.J.: Impact Cratering: A Geologic Process. Oxford University Press, New York (1989)

    Google Scholar 

  38. Melosh H.J., Ivanov B.A.: Impact crater collapse. Annu. Rev. Earth Planet. Sci. 27, 385 (1999)

    Article  ADS  Google Scholar 

  39. Ballotini Impact Beads, Potters Industries, Inc

  40. Thoroddsen S.T., Shen A.Q.: Granular jets. Phys. Fluids 13, 4 (2001)

    Article  ADS  Google Scholar 

  41. Bouchaud J.P., Cates M., Ravi Prakash J., Edwards S.: Hysteresis and Metastability in a Continuum Sandpile Model. Phys. Rev. Lett. 74(II), 1982 (1995)

    Article  ADS  Google Scholar 

  42. Wada K., Senshu H., Matsui T.: Numerical simulation of impact cratering on granular material. Icarus 180, 528–545 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. de Bruyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vet, S.J., de Bruyn, J.R. The collapse of a cylindrical cavity in a granular medium. Granular Matter 14, 661–670 (2012). https://doi.org/10.1007/s10035-012-0364-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0364-x

Keywords

Navigation